
Version 2.4                                                                                                                       July 2022 

 

1 

 

5. OVERFLOW-D-Mode Operation with Grid Movement 
 

This section describes typical run sequences with OVERFLOW 2.3 in the OVERFLOW-D-mode with grid 

movement. As it does for OVERFLOW-D-mode without grid motion, the code goes through three steps before 

reaching the flow solver.  First, it generates the overlapping Cartesian off-body grid system.  Second, if the run uses 

MPI parallelization, OVERFLOW splits grids for load balancing and then assigns groups of grids to individual MPI 

processes.  Each group is run in a separate process, with MPI calls facilitating communication between the groups.  

Third, hole cutting and interpolation for the overlapping grids are determined using the domain connectivity 

software DCF.   

As described in the previous chapter, each X-ray is tied to a body, identified by “Comp ID” number in the 

GEN-X window of overgrid.  This allows the X-ray to move with the body.  Body or Component ID number n 

refers to the nth-component defined in the Config.xml file for motions controlled with GMP.   The Body or 

Component ID number refers to the nth-component defined in the FOMOCO input file for motions controlled using 

NAMELIST &SIXINP.  This Body ID also matches IBLINK supplied for each grid in &SIXINP. 

The NAMELIST &OMIGLB input DYNMCS is set to TRUE to allow near-body grid motion.  It is not 

possible to move the automatically generated Cartesian off-body grids.  User-defined level-1 regions specified in  

NAMELIST &BRKINP may move if they are associated with a body using the input parameter IBDYTAG (see 

Chapter 4).   

Grid motion is specified using the &OMIGLB NAMELIST input parameter I6DOF.  There are three 

options in OVERFLOW 2.3 for performing grid motion based on I6DOF.  

 

I6DOF = 0  Body motion is performed based on the user supplied subroutine omisoft/sixdof/user6.F.  The 

user must create the subroutine to describe the motion for this option.  The code must be 

recompiled with the desired subroutine included.  This method allows access to most of the 

moving body variables inside the code and can be used for prescribed motion or a six-degree-

of-freedom (6-DOF) model.  This requires a good knowledge of the workings of the code.  

Several examples are included in omisoft/sixdof/user6.F.  Details of this method will not be 

included in this manual.  This option allows the user to add an external 6-DOF model or to 

add more complex physics such as grid deformation. 

 

I6DOF = 1  Body motion is performed based on the input in NAMELIST &SIXINP.  This method 

supports 6-DOF motion only and does not allow for prescribed motion.  Motion is determined 

based on the integrated aerodynamic forces and moments on the body plus a user-specified 

external force or moment.  Body motion is relative to the global coordinate system only for 

this option.  Bodies may only be simply connected (i.e., parent–child).  Only simple motion 

constraints are allowed. 

 

I6DOF = 2  Body motion is performed based on the Geometry Manipulation Protocol1 (GMP) XML files 

Config.xml and Scenario.xml.  This method allows for prescribed motion and/or 6-DOF 

motion.  6-DOF motion is determined based on the integrated aerodynamic forces and 

moments on the body plus user-specified external forces and moments.  The XML files allow 

for hierarchical specification of the relationships between bodies, and thus allow for relative 

motion between bodies.  Because of the additional flexibility allowed with GMP this is the 

recommended method for moving-body simulations in OVERFLOW 2.3.  The XML files can 

be created in, and prescribed motion of the body may be previewed using overgrid. 

 

Note: while the XML interface appears to allow considerable flexibility, the 6-DOF integration routines in 

OVERFLOW 2.3 are limited.  Testing of the desired functionality for a new application is highly recommended.  

Further, the motion previewing capability in overgrid and the motion routines in OVERFLOW 2.3 may not agree 

on the interpretation of the XML files, though this should be fixed in Chimera Grid Tools 2.1.  One method of 

testing in OVERFLOW 2.3 is to set ITER=0 and ITERT=0 for all grids, turning off the flow solver and turbulence 

model. 

The non-dimensional position, orientation, forces, and moments of a moving body will be written to the 

sixdof.out and animate.out files.   The format for both files is given in Appendix A. 

 



Version 2.4                                                                                                                       July 2022 

 

2 

 

5.1 Body Motion Non-Dimensionalization 
 Non-dimensionalization of the NAMELIST input quantities used by the 6-DOF models for I6DOF=1 or 

I6DOF=2 is based on Vref (reference velocity), L (length one in the computational grid), and ∞ (free-stream 

density).  The reference velocity may be specified using the &FLOINP NAMELIST parameter REFMACH if it is 

different from the free-stream Mach number (FSMACH).  The non-dimensional quantities in the input are defined 

as  
 

Length:   l* = 1/L 

Mass:   m* = m/( ∞L3) 

Velocity:  V* = V/Vref 

Time:   t* = t(Vref/L) 

Acceleration:  a* = a (L/Vref
2) 

Force:   F* = F/( ∞Vref
2L2) 

Moment-of-inertia: I* = I/( ∞L5) 

Angular velocity:  * = (L/Vref) 

Moment:  M* = M/( ∞Vref
2L3) 

 

The moments of inertia for a body are defined in the initial body coordinate system.  Two examples of non-

dimensionalization for moving body problems are shown below. 

 

Example 5.1 

10/2/2006 1

Non-Dimensionalization Example: Airfoil Drop

• Assume standard sea-level conditions:
– ρ∞ = 0.002378 slug/ft3

– c∞ = 1117 ft/sec

– Gravity = 32.2 ft/sec2

• Pick airfoil properties:
– chord = 1 ft

– weight = 30 lb (heavy!)

• Flow conditions:
– Mach = 0.2

– Re/chord = 1 million

• From these we have:
dimensional non-dimensional

L = 1 ft L* = 1 (grid is in chords)

Vref = 223.4 ft/sec Vref* = 1

g = 32.2 ft/sec2 g* = 645x10-6

Wt = 30 lb Wt* = 0.2528

mass = 0.9317 slug mass* = 392

Iyy = 0.05054 slug-ft2 Iyy* = 21.25

• And pick (so that 400 steps is 0.1 sec):
Δt = 0.00025 sec Δt* = 0.05585

 



Version 2.4                                                                                                                       July 2022 

 

3 

 

Example 5.2 

 

10/2/2006 64

Non-Dimensionalization Example: 

Apollo Ballistic Range Model
• Ballistic range model properties:

– diameter = 63 mm

– mass = 575.9 g

– (Ixx, Iyy, Izz) = (0.1833, 0.1761, 0.1761)x106 g-mm2

• Assume standard sea-level conditions:
– ρ∞ = 1.226 g/mm3

– c∞ = 0.3405x106 mm/sec

– Gravity = 9807 mm/sec2

– μ∞ = 1.781 g/mm-sec

• Flow conditions:
– Mach = 2.5

– Re/mm = 58,610/mm

• From these we have:
dimensional non-dimensional

L = 1 mm L* = 1 (grid is in mm)

Vref = 0.8512x106 mm/sec Vref* = 1

g = 9807 mm/sec2 g* = 13.53x10-9

mass = 575.9 g mass* = 469.7x106

Ixx = 0.1833x106 g-mm2 Ixx* = 149.5x109

Iyy = Izz = 0. 1761x106 g-mm2 Iyy* = Izz* = 143.6x109

 
 

5.2 Six-Degree-of-Freedom Motion Using &SIXINP 
Dynamic motion can be simulated by utilizing the SIXDOF module.  The NAMELIST &SIXINP input 

IGMOVE determines if a near-body grid is stationary (0) or moving (1).  The input IBLINK specifies the Body ID 

that this grid is part of, and guarantees that each grid that is part of a body undergoes the motion of that body.  The 

body component grids will be moved to the new position determined by the SIXDOF module.  The body number 

used by OVERFLOW 2.3 will coincide with the order of the components used for the force and moment calculation 

with FOMOCO or USURP.  The list of components can be found at the end of the mixsur.fmp file.  If NAMELIST 

&OMIGLB input DYNMCS=.FALSE., but IGMOVE=1, initial movement can occur with the appropriate inputs, 

but the grids will then remain static for the remainder of the simulation.  Thus it is not possible to turn off all grid 

motion using DYNMCS=.FALSE. only.  IGMOVE may also need to be set to 0 if initial translation or rotation 

parameters are present. 

The initial position of a grid can be specified using the NAMELIST &SIXINP inputs (X00,Y00,Z00), 

(X0,Y0,Z0), and (E1,E2,E3,E4).  (X00,Y00,Z00) defines the body center of gravity in the body coordinate system, 

(X0,Y0,Z0) is the location of the body center of gravity in the global coordinate system, and (E1,E2,E3,E4) are the 

Euler parameters (quaternion) that describe the rotation of the body about the center of gravity in the global 

coordinate system.  This may be thought of as a rotation followed by a translation.  The Euler parameters are defined 

by 

 

 E1 = cos(½)cos(½ )sin(½) - sin(½)sin(½)cos(½) 

 E2 = cos(½)sin(½)cos(½) + sin(½)cos(½)sin(½)           (5.1) 

 E3 = sin(½)cos(½)cos(½) - cos(½)sin(½)sin(½) 

 E4 = cos(½)cos(½)cos(½) + sin(½)sin(½)sin(½) 

 

where , , and  are the yaw (rotation about the z-axis), pitch (rotation about the y-axis), and roll (rotation about 

the x-axis), respectively.  These angles are defined for a yaw-pitch-roll active rotation of the body.  E4 is the real 

part of the quaternion.  The rotation matrix A can be determined from the Euler parameters by 
 

a11 = 1-2E22-2E32 = cos()cos() 

a12 = 2(E1*E2-E3*E4) = sin()cos() 

a13 = 2(E1*E3+E2*E4) = -sin() 



Version 2.4                                                                                                                       July 2022 

 

4 

 

a21 = 2(E1*E2+E3*E4) = cos()sin()sin()-sin()cos() 

a22 = 1-2E12-2E32 = sin()sin()sin()+cos()cos()           (5.2) 

a23 = 2(E2*E3-E1*E4) = cos()sin()  

a31 = 2(E1*E3-E2*E4) = cos()sin()cos()+sin()sin() 

a32 = 2(E2*E3+E1*E4) = sin()sin()cos()-cos()sin() 

a33 = 1-2E12-2E22 = cos()cos() 

 

The yaw, pitch, and roll angles can be found from the rotation matrix as 

 

  = sin-1(-a13) 

  = tan-1(a12/a11)              (5.3) 

  = tan-1(a23/a33) 
 

The physical properties of a moving body (mass, weight, moments of inertia, and center of gravity location) 

must be included for (at least) the first grid that makes up the moving body.  The moving body initial specified 

forces, moments, and duration must also be included for the first grid that makes up the body.  These forces and 

moments are assumed to act about the body center of gravity. 

The OVERFLOW 2.3 NAMELIST input for the dropping airfoil case in Example 5.1 using the &SIXINP 

input is shown below.  The drop begins after 800 time steps are used to initialize the carriage solution.  Setting 

ISHIFT=800 defines the new zero iteration values for the start of the drop.  The two airfoils share the same position 

in the grid.in file, so the second airfoil is translated down to its proper initial position using (X0,Y0,Z0).  The 

location of the center of gravity of the second airfoil is defined using (X00,Y00,Z00).  The direction for the gravity 

unit-vector is defined by (GRAVX,GRAVY,GRAVZ). 
 

&GLOBAL 

 RESTRT= .T.,  NSTEPS= 1100, 

 DTPHYS=0.05585, NITNWT=5, 

 NQT   = 102, 

/ 

 

&OMIGLB 

 IRUN  = 0,  IBYMIN= 21, 

 DYNMCS= .T.,  I6DOF = 1, 

 LFRINGE = 2, 

/ 

&DCFGLB DQUAL = 0.1,  

/ 

&GBRICK 

 DFAR  = 10,  DS    = 0.016,  CHRLEN= 1, 

 XNCEN = 0.5,  YNCEN = 0,  ZNCEN = 0, 

 OFRINGE = 2, 

/ 

&BRKINP / 

&GROUPS / 

&XRINFO IDXRAY= 1,  IGXLIST= 2,-1,  XDELTA = 0.04, / 

&XRINFO IDXRAY= 2,  IGXLIST= 1,-1,  XDELTA = 0.04, / 

&XRINFO IDXRAY= 3,  IGXLIST= -1,  XDELTA = 0.0, / 

 

&FLOINP 

 ALPHA = 0,  FSMACH= 0.2,  REY   = 1.E6, 

/ 

&VARGAM / 

 

&GRDNAM NAME  = 'Airfoil_1', / 

&NITERS / 

&METPRM 



Version 2.4                                                                                                                       July 2022 

 

5 

 

 IRHS   = 5, ILIMIT = 3, ILHS   = 6, 

/ 

&TIMACU ITIME = 0,  

/ 

&SMOACU FSO = 3,  

/ 

&VISINP / 

&BCINP 

 IBTYP =   5, 51, 21, 

 IBDIR =   2,  2,  3, 

 JBCS  =  25,  1,  1, 

 JBCE  = -25, 24, -1, 

 KBCS  =   1,  1,  1, 

 KBCE  =   1,  1, -1, 

 LBCS  =   1,  1,  1, 

 LBCE  =  -1, -1,  1, 

/ 

&SCEINP / 

&SIXINP 

 ISHIFT = 800, 

 IBLINK = 1, 

 IGMOVE = 0, 

/ 

 

&GRDNAM NAME  = 'Airfoil_2', / 

&NITERS / 

&METPRM / 

&TIMACU / 

&SMOACU / 

&VISINP / 

&BCINP 

 IBTYP =   5, 51, 21, 

 IBDIR =   2,  2,  3, 

 JBCS  =  25,  1,  1, 

 JBCE  = -25, 24, -1, 

 KBCS  =   1,  1,  1, 

 KBCE  =   1,  1, -1, 

 LBCS  =   1,  1,  1, 

 LBCE  =  -1, -1,  1, 

/ 

&SCEINP / 

&SIXINP 

 ISHIFT = 800, 

 IBLINK = 2, 

 IGMOVE = 1, 

 BMASS  = 392.0, 

 WEIGHT = 0.02528, 

 X0 = 0.25, Y0 = 0.0, Z0 = -0.3, 

 X00 = 0.25, Y00 = 0.0, Z00 = 0.0, 

 TJJ = 0.0, TKK = 21.3, TLL = 0.0,  

 GRAVX = 0.0, GRAVY = 0.0, GRAVZ = -1.0, 

/ 

 

&GRDNAM NAME  = 'Off-body grids', / 

&NITERS / 

&METPRM / 

&TIMACU / 



Version 2.4                                                                                                                       July 2022 

 

6 

 

&SMOACU / 

&VISINP / 

&BCINP  / 

&SCEINP / 

 

5.3 GMP XML Specification 
 Body motion may also be specified using the GMP interface, by setting the NAMELIST &OMIGLB 

parameters I6DOF=2 and DYNMCS=.TRUE..  If DYNMCS=.FALSE., the code will preposition the bodies 

according to the Config.xml input file, but will not begin the motion.  Nothing is specified in the &SIXINP 

NAMELIST when running in this mode (&SIXINP may be omitted from the input file). 

 The following text refers to the Geometry Manipulation Protocol (GMP) in general, and does not imply 

that all capabilities discussed are implemented in OVERFLOW 2.3.  Only a subset of GMP is implemented in 

OVERFLOW.  This section is copied in large part from Ref. 1. 

 

GMP1 is a protocol for specifying geometric hierarchies and their rigid-body motions. This protocol takes 

the form of a general set of datatypes and rules which can be implemented through any desired syntax, with the 

current choice being the Extensible Markup 1 Language2 (XML). This low-level XML implementation is then 

“wrapped” with an Application Programming Interface (API). With this interface between the geometry motion and 

the application tools (such as the CFD flow solver), it is possible to build automated tools for performing dynamic 

simulations. The specification is suitable for simple analytic prescribed motions, as well as complex N-body 

problems with collisions and controller feedback. A fixed specification for the geometry motion allows multiple 

application programs, such as visualization tools, flow solvers, and post-processing tools, to be built upon a common 

interface. The geometry motion can be stored in a single repository, and shared among distributed applications, 

which minimizes errors due to duplication. 

The interface specification relies heavily upon a generic function parser which is capable of parsing and 

interpreting arbitrary analytic functions.  These analytic functions can take an arbitrary number of arguments. The 

parser understands the common mathematical operators and precedence rules, such as “(), ˆ, _, /,%,+,−”, common 

constants such as , and most commonly used functions such as “abs, log, sin, sqrt, tanh, . . . ”. For example, pitch 

rate ((t) = 10.0 sin(2t)) for an oscillating airfoil is expressed as 10.0*sin(2*pi*t), and can be evaluated at run-time 

by providing an appropriate scalar value to substitute for the variable t. This substitution mechanism is provided by 

the function parser API. Within the GMP, an analytic function which takes no arguments replaces the role of a scalar 

value, i.e. a single scalar, or numeric value, is not an explicit type. In this manner, it is possible to use variables and 

constants which are appropriate to the problem, making the interface easier to specify. For instance, an angle of 

rotation can be specified as pi/4, as opposed to 0.7854, and the result will be evaluated at run-time by the application 

using the API for the function parser. In the current specification, a nomenclature is adopted to describe the analytic 

function datatype, and optionally the arguments which are expected. All numeric fields are specified as an arbitrary 

function which takes no arguments, f(). If an analytic function datatype is expected to take an argument of time in 

the interface, it will be described using f(t). A vector of 3 numeric fields, such as is used to describe a position, is 

specified as vector: f(). 

The complete geometry which is being simulated is referred to here as a Configuration. Before a motion 

can be specified, it is necessary to describe the Configuration, so that a user can simply describe the motion of “the 

left rotor”, as is intuitive, rather than being forced to refer to some application-specific geometry description. Instead 

of tightly coupling the Configuration information with a motion specification, the means of specifying a 

Configuration and the means of specifying its motion are separated. The motion specification is then built by 

referring to the Configuration. This allows different motions to easily refer to the same Configuration, as well as 

provides the ability to build separate tools which extend the Configuration. 

Within GMP, the Configuration description is stored in an XML file named Config.xml.  A typical 

Configuration is often made up of lower-level pieces, referred to here as Components. A simplified representation of 

the V-22 tilt-rotor geometry is shown in Fig. 5.1, with the different Components highlighted by color.  The V-22 is 

made up of many Components, such as the fuselage, wing, empennage, rotors, etc. Many of these Components can 

also be further broken into smaller pieces, for example the rotors can be broken down into a nacelle, hub, and 

blades. This suggests that the Configuration is composed of a hierarchy, or tree, of Components. One possible 

hierarchy structure for the V-22 is shown schematically in Fig. 5.2. Notice also that this hierarchy is not unique, for 

example the rotors might be considered as a lower-level Component of the wing, or on the same level as the wing. 

These different hierarchies can become important when specifying the relative motion. 



Version 2.4                                                                                                                       July 2022 

 

7 

 

 
Figure 5.1 Example Configuration hierarchy for the V-22 tiltrotor. 

 
 

Figure 5.2  Example Configuration hierarchy for the V-22 tiltrotor.  Component types are specified by color and 

text. Solid lines represent a parent-child relationship. 

 

While the abstract hierarchy description of a Configuration is helpful, at some level it must be associated 

with the actual geometry that is to be manipulated.  This is accomplished by requiring that each Component specify 

its Type, and optionally include some type-dependent Data. In order to promote flexibility within the Configuration 

specification, each type of Component is considered equal, and can be utilized anywhere within the Configuration 

hierarchy.  Further, the Component types form an open-ended list which can be extended by future applications as 

needed. In other words, it is up to the external applications to determine which type of Components they can work 



Version 2.4                                                                                                                       July 2022 

 

8 

 

with and understand, not the specification, and similarly for the optional type-dependent Data. The tree diagram of 

Fig. 5.2 includes a label with the different Component types. These types are briefly described as 

 

• struc: A set of structured grid (possibly overlapping) surface patches 

• tri: A surface triangulation [not implemented] 

• container: An agglomeration of lower-level Components 

• clone: A duplicate of another (non-clone) Component [not implemented] 

 

A Component of the Configuration hierarchy has the following complete list of attributes: 

 

• Component: 

- Name [string] (required) 

- Type [“struc” or “container”] (required) 

- Parent [string] (optional) 

- Data [arbitrary] (optional) 

▪ Grid List [integers]  (optional) 

- Transforms (optional) 

▪ Translate (optional) 

▪ Displacement [vector: f()] (required) 

▪ Rotate (optional) 

▪ Center [vector: f()] (required) 

▪ Axis [vector: f()] (required) 

▪ Angle [f()] (required) 

▪ Mirror (optional) 

▪ Plane [“X”, “Y”, or “Z”] (required) 

 

The Parent attribute is used to specify the tree structure of the Configuration. The motion of a Component 

is usually specified relative to its Parent.  Root nodes of the tree have no parents (the interpretation being that the 

inertial reference frame is the parent for motion), and multiple root nodes are allowed. The Grid List tag assigns 

near-body grid numbers from the grid.in file to the body Name that is specified.  The Transforms tag is used if the 

Component is to be translated, rotated, or mirrored into position within the Configuration, and is made up of sub-

types for specifying the actual transformations. [Note that mirroring is not useful for structured grids, since the 

resulting computational coordinates would be left-handed.]  All coordinates used in the transformation are specified 

in the original, untransformed (natural) coordinate system of the appropriate geometry. Grids, as supplied in the 

grid.in file, are in their body coordinate frame. Transforms specified for each Component define the transformation 

from the Component’s body frame to its parent frame.  If the component has no Parent, then the transformation is to 

the inertial frame. 

The clone Type can represent an exact duplicate, although in most instances the original is copied and then 

Transformed to a new position. For example, the cloned Component can be Mirrored about the x, y, or z = 0 plane 

for Configurations with lateral symmetry. Similarly, a single turbine blade can be cloned and Rotated to form a set 

of blades around a hub. In this manner errors due to duplication are reduced, and a common set of methods can 

easily be extended to an arbitrary number of Components. 

Each motion specification refers to the Configuration description outlined in the previous section.  The 

specific Components which are in motion are referred to by their Name attribute. The motion, or sequence of 

motions, is described by what is referred to as a Scenario, and is specified in an XML file named Scenario.xml.  

Scenarios are parameterized by time (t), starting at t = 0, with the units of time dependent upon the application. A 

Scenario is characterized by a number of actions, each occurring at a specific time, and for a specific duration.  

Currently, two types of actions can be specified; Prescribed motions, and Aero6DOF motions.  These two types of 

motions are considered as distinct types as there is little commonality between them. 

Both Config.xml and Scenario.xml files include additional information as attributes which apply to the 

entire file. For the Config.xml file, a Configuration type includes the AngleUnit attribute, which sets the units for the 

Rotate transformation Angle attribute.  (Note that trigonometric functions still expect arguments in radians).  

 

• Configuration: 

- Name [string] (optional) 



Version 2.4                                                                                                                       July 2022 

 

9 

 

- AngleUnit [“radian” (default) or “degree”] (optional) 

 

Similarly the Scenario.xml file has a Scenario type with several attributes.  AngleUnit sets the units for Angle and 

Speed attributes for Prescribed and InitialPosition motions, as well as the Angle attribute used in Aero6DOF. 

 

• Scenario: 

- Name [string] (optional) 

- AngleUnit [“radian” (default) or “degree”] (optional) 

- Gravity [vector: f()] (optional) 

 

These types are included at the top of the appropriate file (see examples below). 
 

5.4 GMP Prescribed Motion 
 The Prescribed motion can be specified as an arbitrary analytic function of time, or through a discrete table 

look-up [not implemented]. The analytic functions of time are parsed and evaluated by the stand-alone function 

parser. The time is interpreted as relative to the Start time of the current Prescribed motion [not in current versions 

of OVERFLOW 2.3], and a substitution of this current relative time is performed whenever the analytic functions 

are evaluated. This allows a Prescribed motion to be used multiple times within the same Scenario without 

modification. In order to specify the motion, either the position of a Component must be specified, or its velocity 

and initial position, though both position and velocity are usually needed by most CFD flow solvers. Since the initial 

position is available from the description of the Configuration, and it is easier to numerically integrate a function 

accurately than it is to differentiate, the analytic motion is Prescribed by providing the translational and angular 

velocities over the time period. The exception to this is the table look-up mode of operation, where the flexibility to 

specify only the position is allowed. 

Motions are usually Prescribed relative to the parent of the Component within the Configuration hierarchy, 

and this is the default behavior. The motion is specified in the initial coordinate system of the input geometry (after 

any required Transforms have been applied within the Configuration specification). Prescribed motions have the 

following required and optional attributes: 

 

• Prescribed 

- Component [string] (required) 

- Start [f()] (required) 

- Duration [f()] (optional) 

- Translate (optional) 

▪ Velocity [vector: f(t)] (required) 

▪ Frame [“parent” (default), “body”, or “inertial”] (optional) 

- Rotate (optional) 

▪ Center [vector: f()] (required) 

▪ Axis [vector: f()] (required) 

▪ Speed [vector: f(t)] (required)  

▪ Frame [“parent” (default), “body”, or “inertial”] (optional) 

 

Start and Duration refer to the starting time and duration of the action. If the Duration is not specified the 

action is considered to be continued indefinitely.  Prescribed motions are allowed to overlap in time intervals, and 

are ordered by their Start times.  The Translate and Rotate commands specify the translational velocity of the center 

of mass of the component, and the rotation rate about an arbitrary axis through the center of rotation respectively.  

These commands are specified in the coordinates of the axis system specified by the Frame type. Choices for Frame 

are body, parent, or inertial, with the default being parent. Multiple Translate and Rotate commands can be 

combined within a single Prescribed action, and are applied in the order they are specified within the XML file. 

In addition to Prescribed is an optional specification of InitialPosition.  This can be used with either 

Prescribed or Aero6DOF motion, and allows the orientation of the Components within a dynamic simulation to be 

transformed after a Configuration has been “built.”  This allows a general Configuration to be described, and then 

specialized if necessary for a dynamic simulation, i.e. it further decouples the Configuration and motion 

specification.  Any Prescribed motion time level t = 0 is assumed to refer to the position of the body after the 

(optional) InitialPosition transforms have been applied.  InitialPosition specifications have the following form and 

attributes; these transforms are all assumed to be in the parent frame: 



Version 2.4                                                                                                                       July 2022 

 

10 

 

 

• InitialPosition (optional) 

- Component [string] (required) 

- Translate (optional) 

▪ Displacement [vector: f()] (required) 

- Rotate (optional) 

▪ Center [vector: f()] (required) 

▪ Axis [vector: f()] (required) 

▪ Angle [f()] (required)  

- Mirror (optional)  

▪ Plane [“X”, “Y”, or “Z”] (required) 

 

The XML files required for simulating a pitching airfoil are shown below.  The free-stream Mach number 

is 0.29 and the reference temperature is 518.7oR.  The airfoil has a one-foot chord.  The grid unit is wing chords (1 

foot).  The airfoil motion is given by 

 

 = 4.0o+4.2osin(2ft)           (5.4) 

 

where the pitch oscillation is ten cycles per second.  The Config.xml file is given by 
 

Example 5.3 Config.xml 

   <?xml version="1.0" encoding="utf-8" ?>  

 <Configuration AngleUnit="degree"> 
  <Component Name="WING" Type="struc"> 
    <Data>Grid List=1</Data>  

  <Transform> 
     <Rotate Center="0.25, 0.0, 0.0" Axis="0.0, 1.0, 0.0" Angle="-0.2" />  

    </Transform> 

   </Component> 

  </Configuration> 

 

Here the rotation center for initial placement of the body is set at the quarter-chord location and the rotation is 

defined about the y-axis.  The airfoil is initially oriented at the bottom of the oscillation (=-0.2o).  The motion is 

prescribed by the following Scenario.xml file: 

 

Example 5.3 Scenario.xml 

   <?xml version="1.0" encoding="utf-8" ?>  

 <Scenario AngleUnit="degree"> 
  <Prescribed Component="WING" Start="6.323527"> 

<Rotate Center="0.25, 0.0, 0.0" Axis="0.0, 1.0, 0.0"   
Speed="4.2*0.1940665*cos(0.1940665*t+1.5*pi)" Frame="parent" />  

    </Prescribed> 

  </Scenario> 

 

The motion will begin after a non-dimensional time of 6.323527.  The airfoil will oscillate about the y-axis at the 

quarter-chord location in the parent coordinate system.  The oscillation is specified in terms of the grid velocity in 

degrees per second.  The frequency is non-dimensionalized using the grid reference length and the reference 

velocity.  Time is non-dimensionalized in a similar manner. 

 A slightly more complicated example is a wing/flap configuration in which the wing and flap are 

oscillating while the flap is oscillating relative to the wing.  The Config.xml file for this case is shown below. 

 

Example 5.4 Config.xml 

   <?xml version="1.0" encoding="utf-8" ?>  

 <Configuration AngleUnit="degree"> 
  <Component Name="Wing" Type="struc"> 
     <Data>Grid List=1,2</Data>  



Version 2.4                                                                                                                       July 2022 

 

11 

 

    </Component> 

  <Component Name="Flap" Parent="Wing" Type="struc"> 
     <Data>Grid List=3</Data>  

   <Transform> 
      <Rotate Center="0.81, 0.0, 0.0" Axis="0.0, 1.0, 0.0" Angle="0.0" />  

     </Transform> 

    </Component> 

  </Configuration> 

 

Here the Wing is defined as containing grids 1 and 2.  The Flap contains grid 3 and is a child of the Wing.  Hence 

the Flap will inherit the motion of the Wing along with its own prescribed motion.  The Scenario.xml file for this 

case is  

 

Example 5.4 Scenario.xml 

<?xml version="1.0" encoding="utf-8" ?>  
 <Scenario AngleUnit="degree"> 

  <Prescribed Component="Wing" Start="0"> 
     <Translate Velocity="0.0, 0.0, 0.25*.05*cos(.05*t)" Frame="parent" />  

    </Prescribed> 

  <Prescribed Component="Wing" Start="0"> 
<Rotate Center="0.25, 0.0, 0.0" Axis="0.0, 1.0, 0.0" Speed="5*.05*cos(.05*t)" 
Frame="parent" />  

    </Prescribed> 

<Prescribed Component="Flap" Start="0"> 

<Rotate Center="0.81, 0.0, 0.0" Axis="0.0, 1.0, 0.0" Speed="40*.1*cos(.1*t)" 
Frame="parent" />  

    </Prescribed> 

   </Scenario> 

 

The Wing motion has both an oscillating translation and orientation.  The translation is in terms of the non-

dimensional velocity.  The Flap motion is specified to be relative to its parent, defined as the Wing in the 

Config.xml file.  Other prescribed motion example files are included in Ref. 1 and in the test subdirectory of the 

code. 
 

5.5 GMP 6-DOF Motion   

With the exception of Start and Duration times, the specification of Prescribed and Aero6DOF motions 

have little in common, and hence are treated as separate types. A component cannot be specified as having both 

Prescribed and Aero6DOF motions overlapping in time. Once a Component has been specified to have an 

Aero6DOF motion, it is no longer considered to be a child of its Parent (if it had one), and becomes a root node, i.e., 

the Configuration specification becomes dynamic when Aero6DOF motions are considered. Aero6DOF motions 

contain the same Name, Start, and Duration types as Prescribed motions, but also contain sub-types for 

InertialProperties, AppliedLoad, Constraint, and Controller. These latter are treated as sub-types of an Aero6DOF 

type, as opposed to types of their own, in order to make them more general. For example, if the AppliedLoad was a 

type then it would need to refer to the Aero6DOF motion it applied to in some manner. The AppliedLoad type 

would then need to be modified each time it was applied to a different Component. By making AppliedLoad a sub-

type, it is implicit which Component it applies to, and it is also possible to use the same AppliedLoad with multiple 

Components without modification.  For example, if a store ejector is modeled, this ejector can be tested with 

different store geometries simply by referencing the appropriate XML code within the specification. Similar 

arguments apply to Constraint and Controller.  AppliedLoad, Constraint, and Controller can be thought of as 

“modifiers” for the Aero6DOF type. In this manner it is possible to build a library of ejector models, feedback 

systems, etc., which can then be used within different simulations without modification. 

The component names used in the FOMOCO input file (and echoed in mixsur.fmp) must be consistent 

with the Component names used in the XML GMP files (including case).  Force and moment information is 

assigned to individual bodies based on these names.   

The complete type map for an Aero6DOF motion is 

 



Version 2.4                                                                                                                       July 2022 

 

12 

 

• Aero6DOF 

- Component [string] (required) 

- Start [f()] (required) 

- Duration [f()] (optional) 

- InertialProperties (required) 

▪ Mass [f(t)] (required) 

▪ CenterOfMass [vector: f(t)] (required) 

▪ PrincipalMomentsOfInertia [vector: f(t)] (required) 

▪ PrincipalAxesOrientation (required) 

- Axis [vector: f()] (required) 

- Angle [f()] (required) 

- AppliedLoad (optional) 

▪ Start [f()] (required) 

▪ Duration[f()] (optional) 

▪ Frame [“parent”, “body” (default), or “inertial”]  (optional) 

▪ Force [vector: f(t)] (optional) 

▪ Moment [vector: f(t)] (optional) 

- Constraint (optional) 

▪ Start [f()] (required) 

▪ Duration [f()] (optional) 

▪ Frame [“parent”, “body” (default), or “inertial”]  (optional) 

▪ Translate [vector: f(t)] (optional) 

▪ Rotate [vector: f(t)] (optional) 

- Controller (optional) [not implemented] 

 

The initial translational and rotational velocities are either zero if no Prescribed motions were in effect 

previously, or are equal to the Prescribed values. It is assumed the origin of the PrincipalAxes corresponds to the 

CenterOfMass location at the beginning of the Aero6DOF motion. The InertialProperties are allowed to be general 

functions of time, as is necessary to model a rocket burning fuel [not implemented].  It is the responsibility of the 

application to implement a suitable model for solving the 6DOF equations under these conditions.  An AppliedLoad 

can be specified in three different coordinate frames: body, parent, and inertial.  An example of a parent frame 

would be a pylon ejector force for a store separation. A constant thrust could be modeled using an AppliedLoad in 

the body frame. 

A Constraint on the other hand is always assumed to be relative to the parent frame.  A Constraint is 

specified as either a Translate constraint, Rotate constraint, or both. The numerical inputs are bounded by 0 and 1, 

with 0 corresponding to unconstrained motion and 1 for no allowed motion relative to the parent system. The three 

components of the Constraint vector are the x, y, z-components of translation or rotation. Arbitrary functions of time 

can be specified for a Constraint or AppliedLoad.  Controller types are specified as modifiers to the Aero6DOF 

motion, however they are currently left vague until more experience is gained with controlled, 6-DOF motions.  

Constraints are implemented in three stages: 

 

1. As an external force and moment, applied such that the component should move in the desired fashion.  An 

equal and opposite reaction force is automatically applied to the parent, if there is one.  (Note that this is 

still under development.) 

2. As corrected velocity and angular rates, again so that the component moves as desired. 

3. As a corrected position. 

 

A sample of a simple constraint is 

 

Example 5.5 

   <Constraint Start="0.5" Duration="0.3" Type="simple" Frame="body" 
     Translate="0,1,1" Rotate="1,1,1" />  

 

This says that the body can translate in the (body) x-direction only, with no rotations. 

The Config.xml input file for the dropping airfoil (Example 5.1) would be 

 



Version 2.4                                                                                                                       July 2022 

 

13 

 

Example 5.6 Dropping airfoil Config.xml file. 
<?xml version="1.0" encoding="utf-8" ?>  

 <Configuration AngleUnit="degree"> 
  <Component Name="Airfoil_1" Type="struc"> 
     <Data>Grid List=1</Data>  

    </Component> 

  <Component Name="Airfoil_2" Type="struc"> 
     <Data>Grid List=2</Data>  

   <Transform> 
      <Translate Displacement="0.0, 0.0, -0.3" />  

     </Transform> 

    </Component> 

   </Configuration> 

 

Here the second airfoil (Airfoil_2) is moved from its initial position in the grid.in file to a position 0.3 chords below 

the first airfoil.  The Scenario.xml file would be 

 

Example 5.6 Dropping airfoil Scenario.xml file. 

<?xml version="1.0" encoding="utf-8" ?>  
 <Scenario Name="Airfoil Drop" Gravity="0.0, 0.0, -6.45E-4" AngleUnit="degree"> 
  <Aero6dof Component="Airfoil_2" Start="60000.0"> 

<InertialProperties Mass="392.0" CenterOfMass="0.25, 0.0, 0.0" 
PrincipalMomentsOfInertia="0.0, 21.3, 0.0"> 

     <PrincipalAxesOrientation Axis="1.0, 0.0, 0.0" Angle="0.0" />  

     </InertialProperties> 

    </Aero6dof> 

   </Scenario> 

 

Here the gravity vector, start time, and moments of inertia are all given as non-dimensional quantities.  The airfoil is 

allowed to drop following 60000 non-dimensional time units. 

 A second example case is for a sphere that is given an upward velocity for the non-dimensional time period 

of t=0 to t=1.  After t=1, the sphere is allowed to drop under the influence of gravity.  The Scenario.xml file for this 

motion is 

 

Example 5.7 Sphere motion Scenario.xml file 

   <?xml version="1.0" encoding="utf-8" ?>  

 <Scenario AngleUnit="radian" Gravity="0,0,-1.0"> 

  <Prescribed Component="Sphere" Start="0" Duration="1"> 

     <Translate Velocity="0.0, 0.0, 1.0" Frame="inertial" />  

    </Prescribed> 

  <Aero6dof Component="Sphere" Start="1.0"> 

 <InertialProperties Mass="1.0" CenterOfMass="0.0, 0.0, 0.0" 

PrincipalMomentsOfInertia="1.0, 1.0, 1.0"> 

     <PrincipalAxesOrientation Axis="1.0, 0.0, 0.0" Angle="0.0" />  

     </InertialProperties> 

    </Aero6dof> 

   </Scenario> 

 
 Further examples of the XML input files can be found in Ref. 1 and in the test subdirectory of the code. 

 

5.6 Using overgrid to Preview GMP Body Motion 
 The Chimera Grid Tools (CGT) graphical interface overgrid can be used to preview prescribed body 

motion and to visualize the resulting motion from 6-DOF body simulations.  Examples of using overgrid to preview 

body motion and to visualize 6-DOF trajectories are shown below. 



Version 2.4                                                                                                                       July 2022 

 

14 

 

 

Example 5.8  Prescribed motion preview using overgrid 

10/2/2006 78

• Prescribed motion can be visualized in OVERGRID by reading in (surface 

grids or) grid.in, Config.xml and Scenario.xml

– Start OVERGRID with surface grids or grid.in

– Click “COMPONENTS”

– On COMPONENTS menu,

• Click Read “Config” (“OK”)

• Click Read “Scenario” (“OK”)

 
 

10/2/2006 79

• Menu shows information on each component

– Component names and hierarchy

– Initial transforms from Config.xml

– Prescribed motions from Scenario.xml

• Enter animation information

– Start/end time and number of steps

– Click “PLAY”

 
 

 

Example 5.9  6DOF motion visualization using overgrid 

 



Version 2.4                                                                                                                       July 2022 

 

15 

 

10/2/2006 80

• For visualizing 6-DOF motion (after the OVERFLOW simulation is 

complete) read in basename.animate:

– Click “Add New” motion command

– Click “Table”

– Type in animate filename and click “Read”

– Click “PLAY”

 
 

  

5.7 Simulating Body Collisions 
OVERFLOW 2.3 includes the capability to simulate the collision of solid bodies using the methodology 

described in Ref. 3.  Contact between bodies is detected by using X-ray hole-cutting applied to surface grids of each 

body.  The code considers a contact has occurred if one body cuts a hole in another body.  Accurate geometric 

representation of collisions may require much finer X-rays than normally used for hole-cutting.  To keep the DCF 

process from becoming very slow, it is a good practice to make the collision X-rays separate from the DCF hole-

cutting X-rays.  Contact detection is enabled (per body) by adding grid “0” to the IGXLIST in the X-ray cutter 

definitions.  The NAMELIST input R_COEF in &OMIGLB sets the global coefficient-of-restitution to be used for 

collision dynamics.  Note that the time of contact is only accurate to within the value of DTPHYS specified for the 

simulation.  Below is an example of the X-ray input for collision detection and simulation. 
 

Example 5.10  X-ray input specification for collision detection and simulation 
&XRINFO  IDXRAY=1, IGXLIST=2,0, XDELTA=0.0,  / 

&XRINFO  IDXRAY=2, IGXLIST=1,0, XDELTA=0.0,  / 

 

Information about each collision event is written to the contact.out file (see Appendix A). 

 

5.8 Moving Body Output Files 
 All of the output files for non-moving body problems described in Chapter 3 and 4 are also output for 

moving body problems.  The q.step#, x.step#, and sixdof.step# files are written out at the iteration number 

increment specified in the &GLOBAL NAMELIST parameter NSAVE.  Two additional text files are also written: 

animate.out and contact.out (see Appendix A for file formats).  The fomoco.out and animate.out files are written 

every time step for 6-DOF motion (&GLOBAL NFOMO is reset to 1). The fomoco.out file has force and moment 

coefficients non-dimensionalized by ½∞Vref
2Sref and ½∞Vref

2SrefLref respectively, where Sref is the reference area and 

Lref is the reference length for a given body specified in the FOMOCO input file.  Moments are taken about the 

moment reference center specified in the FOMOCO input file.  The animate.out file has forces and moments (not 

coefficients) non-dimensionalized by ∞Vref
2L2

 and ∞Vref
2L3 respectively where L is the grid reference length.  

Moments are taken about the body center of gravity.  The overrun script concatenates these files into 

basename.{fomoco,animate,contact}.  Trajectories may be visualized using overplot as shown below. 

 

Example 5.11  Trajectory plotting using overplot 



Version 2.4                                                                                                                       July 2022 

 

16 

 

10/2/2006 77
 

 

5.9 Grid Adaptation to Body Motion 
OVERFLOW 2.3 can adapt the off-body grid system to solution error and geometry.  The original 

adaptation process is described in Refs. 4 and 5.  The frequency of grid adaptation is determined by the NAMELIST 

input NADAPT in &OMIGLB.  If NADAPT=0 no adaptation occurs.  If NADAPT is set to a positive integer n 

then solution is adapted to solution error and geometry proximity every n time steps.  (Solution adaption is described 

in Section 4.5.)  If NADAPT is less than zero, adaptation takes place every -n steps based only on geometry 

proximity.  Adaptation requires that the new off-body grid system interpolate starting values from the solution on 

the old grid system.  One must insure that a body in motion does not leave the surrounding level-1 grids before the 

off-body grids are adapted.  Since DCF does not cut holes in level-2 and higher grids, such a situation will result in 

excessive orphan points and inaccurate simulation. 
 

References 

 
1. Murman, S., Chan, W.M., Aftosmis, M.J., and Meakin, R.L., “An Interface for Specifying Rigid-Body 

Motions for CFD Applications”, AIAA-2003-1237, Jan. 2003. 

2. Harold, E.R., and Means, W.S., XML in a Nutshell: A Desktop Quick Reference, O’Reilly & 

Associates, Inc., 2001. 

3. Meakin, R.L., “Multiple-Body Proximate-Flight Simulation Methods,” AIAA-2005-4621, June 2005. 

4. Meakin, R.L., “An Efficient Means of Adaptive Refinement Within Systems of Overset Grids,” AIAA-

95-1722, June 1995. 

5. Meakin, R.L., “On Adaptive Refinement and Overset Structured Grids,” AIAA-97-1858, June 1997.  

 


