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TIME ACCURACY AND THE USE OF IMPLICIT

METHODS

Thomas H. Pulliam, Associate Fellow AIAA

NASA Ames Research Center

Implicit time differencing methods are usually developed to be time accurate. The
typical implementation and use, though, is either non-time accurate for steady state con-
vergence acceleration or the schemes are modified (e.g. approximate factorization, explicit
boundary conditions, linearization error, etc.) to enhance their efficiency, practical use, or
tractability on conventional computers. This papers examines these departures from time
accuracy and introduces methods to enhance the time accuracy of conventional schemes.
Approximations are examined for their effect on time accuracy, subiteration techniques de-
signed to improve time accuracy are presented, and analysis for time accuracy assessment
are introduced.

I. Introduction

Since 1976, when Steger1 first introduced a practical implicit finite difference scheme
for the Euler and Navier-Stokes equations, there have been numerous (too numerous to
reference here) modifications and new methods developed which use implicit time approx-
imations with various spatial discretion techniques. Until recently, most of the effort was
directed toward steady state or slowly varying unsteady applications. Most of these use
either large time steps, spatially variable scalings, or preconditioning techniques to accel-
erated convergence. The next generation of challenges in CFD, though, will be in the
area of unsteady time accurate calculations. At face value one might assume that explicit
techniques are the choice for such computations. The demands of adequate boundary layer
and complicated geometric resolution make explicit methods too restrictive in terms of
time steps and efficiency for most practical cases. The alternative is to develop more ef-
ficient and accurate implicit methods. One advantage of implicit methods over explicit is
that larger time steps can be used than would be permitted by explicit stability bounds.
For instance, a high Reynolds number viscous transonic airfoil computation using fine grid
resolution at the surface typically requires CFL numbers in the wall normal direction on
the order 103. These arguments have been delineated many times in many references and
applications with the result that implicit methods of one form or another are widely used
today.

This paper will address some of the approximations used to make implicit methods
more efficient and practical for the solution of the Euler and Navier-Stokes equations. In
particular, approximate factorizations, diagonalizations and linearization approximations
will be reviewed and categorized. A subiteration correction scheme commonly used today
will be presented, improved, demonstrated and analyzed. This scheme is used to produce a
second order accurate, more robust implicit method for unsteady flow computations. Also
presented here are 3rd and 4th order time accurate schemes of the ESDIRK class.4,5

II. Euler Equations

The generic form of a system of partial differential equations will be used for demon-
stration and analysis,

∂tQ+ F(Q) = 0 (1)

This generic system of equations may represent any number of conventional problem defi-
nitions, for example: the two-dimensional Euler equations on a Cartesian grid,

∂tQ+ ∂xE + ∂yF = 0 (2)
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so that, F(Q) = ∂xE + ∂yF with

Q =

26664
ρ

ρu

ρv

e

37775 , E =

26664
ρu

ρu2 + p

ρuv

u(e+ p)

37775 , F =

26664
ρv

ρuv

ρv2 + p

v(e+ p)

37775 (3)

with p = (γ − 1)(e− 0.5ρ(u2 + v2)) and γ = 1.4 for a perfect gas,

A. Test Case

An isolated vortex propagation problem is used as the test case. A two-dimensional (2D)
uniform grid is assumed, with periodic boundary conditions in x and simple Dirichlet
conditions in y enforced on a rectangular domain. The domain size for the results shown
below is 10 × 10 units where the vortex core size (diameter) Cd is defined as 1.0 unit. The
equations for the initial condition are a finite core vortex embedded in a free stream flow
Q∞ = (ρ∞,M∞, 0, e∞) with ρ∞ = 1.0,M∞ = 0.5, p∞ = 1

γ
, and T∞ = 1.0. The perturbed (by the

vortex) field is

T = T∞ −
V 2
s (γ − 1)

16Gsγπ2
e2Gs(1−r2)

ρ = T
1

(γ−1) (4)

u = M∞ −
Vs
2π

(y − y0)eGs(1−r2)

v =
Vs
2π

(x− x0)eGs(1−r2)

with the vortex strength Vs = 5.0 and the Gaussian width scale Gs = 0.5 . The vortex is
initially centered at x0 = 5.0 and y0 = 5.0 and r =

p
(x− x0)2 + (y − y0)2. Figure 1 shows

density contours of the initial vortex, which has a period of 10 Cd and unless stated all
computed results are after 30 Cd or three revolutions of the vortex across the domain.

Figure 1. Density Contours, Initial Vortex

III. Time Advance Solver: Implicit Forms

The time advance approach in OVERFLOW is to use implicit time integration for either
steady state computations or in a time accurate mode. Details can be found in numerous
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publications, e.g., the OVERFLOW manual2 or in Pulliam.3 The options for time accuracy
are either 1st or 2nd order using simple time stepping (block tri-diagonal operators) or
dual-timestepping. We shall provide the development of the dual-time stepping in two
forms given below and also show the preliminary development of 3rd and 4th order accurate
implicit Runge-Kutta schemes, ESDIRK.4,5

An implicit approximation in time for the solution of Eq. 2 can be written as

∆Qn =
θ∆t

1 + φ

∂

∂t
(∆Qn) +

∆t

1 + φ

∂

∂t
Qn +

φ

1 + φ
∆Qn−1 +O

»
(θ − 1

2
− φ)∆t2

–
+O

ˆ
∆t3

˜
with ∆Qn = Qn+1 −Qn and Qn = Q(n∆t). The parameters θ and φ can be chosen to produce
different schemes of either first or second order accuracy in time.

The values θ = 1 and φ = 0, results in the first order Euler implicit scheme, θ = 1/2 and
φ = 0 for a trapezoidal implicit or for θ = 1 and φ = 1/2 gives the three point backward
second order implicit scheme (typically referred to as BDF2).

Using Eq. 1 to replace ∂
∂t
Q with −F(Q) we have (neglecting the higher order terms)

∆Qn +
θ∆t

1 + φ
F(Qn+1) =

(θ − 1)∆t

1 + φ
F(Qn) +

φ

1 + φ
∆Qn−1 +O(∆t3) (5)

Equation 5 is nonlinear in terms of Qn+1 due to the second term on the left hand side.
The nonlinear terms are linearized in time about Qn by a Taylor series such that

F(Qn+1) = F(Qn) +A(Qn)∆Qn +O(∆t2) (6)

where A = ∂F(Q)/∂Q is typically called the Jacobian of F and ∆Qn is O(∆t). Note that
the linearizations are carried out to the O(∆t2) terms. These terms will be multiplied (see
below) by ∆t and so if a second order time scheme had been chosen the linearizations would
not degrade the time accuracy.

Replacing F(Qn+1) using Eq. 6 in Eq. 5 one gets»
I +

θ∆t

1 + φ
A(Qn)

–
∆Qn = − ∆t

1 + φ
F(Qn) +

φ

1 + φ
∆Qn−1 (7)

which is second order accurate in time for φ = 0, θ = 1
2

or φ = 1
2
, θ = 1. Equation 7 is kept in

what is called “Delta Form,” referring to the ∆Qn = Qn+1 −Qn term on the left hand side.
Equation 7 is the basis for most implicit time integration schemes. If the original

problem of interest was a system of nonlinear partial differential equations, e.g. the Euler
equations, then the implicit operator of Eq. 7 would represent a matrix operator of the
order of the system size. In addition, if finite difference operators were used for the spatial
derivatives then the implicit operator would represent an even larger matrix system of the
order of the system size times the discrete grid dimensions.

A. Implicit Approximations

In general, Eq. 7 is not too difficult, but prohibitively time consuming, to solve directly.
Large sparse matrix systems usually result from conventional finite difference or finite
volume schemes for the spatial derivatives. Approximations to the implicit operator in
Eq. 7 are employed to either improve the efficiency, reduce computer storage requirements,
enhance the stability, or map the system onto parallel processors.

A more general form is Eq. 7 is

L(Qn)∆Qn = R(Qn, Qn−1) (8)

Approximations to L(Qn) are made for a variety of reasons. In steady state computations
(where one is just interested in satisfying ∆Qn = 0), any approximation to L(Qn) which
produces a stable and convergent solution process is admissible. In fact, L(Qn) is typically
taken as some O(∆t) approximation. In unsteady computations, one tries to maintain the
order of accuracy within any approximations to L(Qn), while at the same time making the
time integration as efficient as possible. Examples include, Beam-Warming6 approximate
factorization of multidimensional implicit schemes applied to the Euler and Navier-Stokes
equations and a diagonal7 (1st order in time) variant of Beam-Warming.
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Beam and Warming6 developed an approximate factorization of multidimensional im-
plicit schemes applied to the Euler and Navier-Stokes equations. The implicit scheme
applied to Eq. 2 yields

[I + αδxA
n + αδyB

n] ∆Qn = R(Qn, Qn−1) = −β (δxE(Qn) + δyF (Qn)) +
φ

1 + φ
∆Qn−1

with An = ∂E
∂Q

, Bn = ∂F
∂Q

, α = θ∆t
1+φ

and β = ∆t
1+φ

.
Second order central differences are typically used for the δ derivatives in Eq. 9, which

would lead to a very large sparse matrix representing L(Qn).
Factorization of Eq. 9 produces

[I + αδxA
n] [I + αδyB

n] ∆Qn − α2(δxA
n)(∂yB

n)∆Qn = R(Qn, Qn−1) (9)

The α2 term in Eq. 9 can be neglected since with ∆Qn = O(∆t) that term is now O(∆t3)
which maintains the second order accuracy of the implicit scheme. In Eq. 9, each of the
separate implicit operators are now banded block tridiagonal matrices and are much easier
to invert.

Pulliam and Chaussee7 introduce a further approximation where they diagonalized
the implicit operators in Eq. 9 using the eigensystems of An = X(Q)ΛAX−1(Q) and Bn =
Y(Q)ΛBY−1(Q).

Briefly, the eigenvector matrices for An and Bn are factored out of the implicit operators
producing

X(Q) [I + αδxΛA] X−1(Q)Y(Q) [I + αδyΛB ] Y−1(Q)∆Qn +O(∆t2) = R(Qn, Qn−1)

The advantage of this scheme is reduced operation counts for the inversions. Instead of
banded block matrices, one now deals with matrix multiples and banded scalar inversions,
since the bracketed terms are diagonal. One disadvantage is that the maximum time
accuracy is now first order (the error term in Eq. 10 is O(∆t2)). Another disadvantage is
that the unsteady nature of this scheme is nonconservative due to the solution dependence
of eigenvector matrices and the errors induced by the diagonalization. On the other hand,
the steady state solutions for this scheme would be identical to the nondiagonalized scheme
(the approximation only affect the implicit operators which at convergence goes to zero
leaving R(Qn, Qn−1) = 0 for both schemes), see Pulliam.7

A number of other common approximations have been used with varying degrees of
consequences in terms of accuracy, efficiency, and stability. Time and space would only allow
one to address a small subset of the numerous approximations presented in the literature.
One common approximation is to use low order accurate spatial difference operators on
the implicit side of Eq. 8, L(Qn), and high order operators on the explicit side, R(Qn, Qn−1).
This is especially advantageous when high order upwind differences are used in conjunction
with flux splitting or flux difference methods, see Steger and Warming8 or Rai.9 Other
approximations include, modified flux Jacobians, incomplete decompositions of the implicit
side matrices, approximate artificial dissipation operators and many more. In general, we
consider our system of equations to be of the form

L(Qn)∆Qn +O(∆tr−1)∆Qn = R(Qn, Qn−1) (10)

where the second term on the left hand side is O(∆tr) since ∆Qn is O(∆t). Of concern is
the effect of the error term on stability, iterative convergence to a steady state, and in
particular for this paper, the resulting time accuracy when approximations are applied. In
general, any approximation to the left hand side of Eq. 8 will affect the time accuracy in
some manner.

IV. Time Accurate Methods

Various approaches to time accurate methods exist in the literature ranging from explicit
linear multi-step schemes (e.g. Lax-Wendroff), multi-stage schemes (e.g. Runge-Kutta),
implicit forms (e.g. full implicit, approximate factorization, implicit Runge-Kutta, etc).
Sometimes the choice is more a matter of personal preference, but most likely efficiency
and accuracy considerations are more often the criteria.
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Within the realm of implicit schemes, direct methods for the unfactored implicit op-
erators Eq. 8, (irregardless of the discrete approximation in space, i.e. finite-difference,
finite volume, etc), are too expensive especially in three-dimensions (3D). Approximate
factorization1,3, 6 is one approach, but time accuracy can be compromised by efficiency
approximations and the cross term errors of the approximate factorization. In addition,
other aspects of real geometry CFD codes, for example, multi-zone approaches,11 etc. can
degrade time accuracy.

A. Dual Time Step

One way to recover the advantage of the fully implicit form, Eq. 5, is the recast the scheme
in terms of a dual-time-stepping approach. Starting with Eq. 1, add the pseudo-time τ
derivative of the solution variable Q to get

∂τQ+ [∂tQ+ F(Q)] = 0 (11)

and drive the pseudo time integration of the fixed point (∂τQ = 0), i.e. steady-state in τ . At
full convergence in τ , the original nonlinear system is satisfied. This is actually done within
the discrete time space, where we used implicit discrete time approximations in both t and
τ . The fully implicit approximation, Eq. 5, is recast as`

(1 + φ)Qn+1 − (1 + 2φ)Qn + φQn−1
´

∆t
+ θF(Qn+1) + (1− θ)F(Qn) +O(∆t2) = 0 (12)

In discrete pseudo-time τ (using iteration index s) with 1st order Euler implicit and
replacing n+ 1 with s+ 1 in Eq. 12, we have

Qs+1 −Qs

∆τ
+

`
(1 + φ)Qs+1 − (1 + 2φ)Qn + φQn−1

´
∆t

+ θF(Qs+1) + (1− θ)F(Qn) +O(∆t2) +O(∆τ ) = 0 (13)

Linearizing F(Qs+1) as in Eq. 6, collecting ∆Qs = Qs+1 −Qs on the left, we have»„
1

∆τ
+

1 + φ

∆t

«
I + θA(Qs)

– `
Qs+1 −Qs

´
+O(∆τ ) =

−

"`
(1 + φ)Qs − (1 + 2φ)Qn + φQn−1

´
∆t

+ θF(Qs) + (1− θ)F(Qn) +O(∆t2)

#
(14)

This is the dual-time-stepping scheme, which can be found in numerous reference, e.g.,
Rai,9 Venkateswaren, et al.,12.13 The basic approach starting at physical time step n
(setting Qs=0 = Qn) to n+ 1, is to integrate the left hand side of Eq. 14 with your favorite
implicit scheme, e.g. approximation factorization, diagonal scheme, direct method, etc.,
until convergence in s. The n and n− 1 terms are evaluated from previous time levels and
after iterating s times, the solution at time level n + 1 will be taken from the most recent
Qs+1. Choosing φ = 1

2
and θ = 1 and in the limit (assuming the iterative process converges)

Qs+1 = Qs, setting Qn+1 = Qs+1 we have

3Qn+1 − 4Qn +Qn−1

2∆t
+ F(Qn+1) +O(∆t2) = 0 (15)

which is a second order in time fully implicit approximation to Eq. 1.
Equation 14 can be written in a form similar to Eq. 8

L(Qs)(Qs+1 −Qs) +O(∆t2) +O(∆τ ) = R(Qs, Qn, Qn−1) (16)

We can now require that the first term on the left hand side be approximated with an error
term of order O(∆tr) with r ≥ 2.

Analysis of Eq. 16 will determine conditions on the approximate implicit operator L(Qs).
The first criteria on L(Qs) is that the resulting iterative scheme does converge. The ad-
ditional requirement is that the local subiteration process be performed until the error is
second order in time. The convergence of the iterative process and the accuracy require-
ment are directly linked, if the iterative scheme fails to converge the error term will be
large.
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The requirement for accuracy is easily defined in terms of Eq. 16 as having

L(Qs)(Qs+1 −Qs) ≈ O(∆t3) (17)

fall within the truncation error of a second order accurate scheme. This term is exactly
the residual of the integration operator which most numerical codes use as a measure
of convergence. Error estimates should be obtainable from measures of the subiteration
residual and/or its rate of convergence.

Results for the vortex propagation using an 80 grid point mesh, the 2nd order implicit
dual time stepping schemes and the 5th order accurate central difference scheme (made up
of the 6th order flux differences and 5th order artificial dissipation) are shown in Fig. 2 after
100Cr for increasing time steps ∆t = 0.025, 0.05, 0.1, 0.2

(a) BF2 ∆t = 0.025 (b) BF2 ∆t = 0.025 (c) BF2 ∆t = 0.05 (d) BF2 ∆t = 0.05

(e) BF2 ∆t = 0.1 (f) BF2 ∆t = 0.1 (g) BF2 ∆t = 0.2 (h) BF2 ∆t = 0.2

Figure 2. Centerline Density and Contours, Computed Vortex: 100 Cr.

B. Newton-Scheme for Time Accuracy

Following Eq. 8, a second order in time difference approximation to Eq. 1 can be written
as

∆t

»
∂Q

∂t
+ F(Q)

–
≈ ∆Qn +

θ∆t

1 + φ
F(Qn+1) =

(θ − 1)∆t

1 + φ
F(Qn) +

φ

1 + φ
∆Qn−1 +O(∆t3) (18)

for proper choices of φ and θ.
Neglecting for now the error term, rewrite Eq. 18 substituting a new iterative index

p+ 1 for the n+ 1 terms and add Qp to both sides of the equality, giving

∆Qp +
θ∆t

1 + φ
F(Qp+1) = −(Qp −Qn) +

(θ − 1)∆t

1 + φ
F(Qn) +

φ

1 + φ
∆Qn−1 (19)

Linearizing about Qp and writing in “Delta Form” we have»
I +

θ∆t

1 + φ
F ′(Qp)

– `
Qp+1 −Qp

´
=

(θ − 1)∆t

1 + φ
F(Qn)− ∆t

1 + φ
F(Qp)−

»
Qp − 1 + 2φ

1 + φ
Qn +

φ

1 + φ
Qn−1

–
(20)

with F ′(Qp) = ∂F/∂Q.
Equation 20 is the basic newton-iteration time advance scheme which will yield second

order time accuracy independent of the choice of F ′(Qp) if the subiteration process con-
verges. The n and n − 1 terms are evaluated from previous time levels and after iterating
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p times the solution at time level n+ 1 will be taken from the most recent Qp+1. Choosing
φ = 1

2
and θ = 1, in the limit (assuming the iterative process converges) Qp+1 = Qp, setting

Qn+1 = Qp+1 we have

3Qn+1 − 4Qn +Qn−1

2∆t
+ F(Qn+1) = 0 (21)

which is a second order in time fully implicit approximation to Eq. 1.
Equation 20 can be written in a form similar to Eq. 8

L(Qp)∆Qp = R(Qp, Qn, Qn−1) (22)

where R(Qp, Qn, Qn−1) represents the fully implicit approximation to Eq. 1. We can now
consider the left-hand-side as the error term of order O(∆tr) with r ≥ 2 .

Analysis of Eq. 22 will determine conditions on the approximate implicit operator L(Q).
The first criteria on L(Q) is that the resulting iterative scheme does converge. The addi-
tional requirement is that the local subiteration process be performed until the error is
second order in time. The convergence of the iterative process and the accuracy require-
ment are directly linked, if the iterative scheme fails to converge the error term will be
large.

The solution procedure when employing Eq. 22 is as follows. Given a choice of the
approximate operator L(Q) and an initial solution Qn (probably from one iteration of a
first order scheme) a given number of subiterations p = 0, 1, . . . , np are performed (typically
3, but some analysis below will provide guidelines for a proper choice). Comparing Eq. 20
and Eq. 7, we see a change of variable (n to p) and the addition of a few terms to the
right-hand-side. If one assumes that a given numerical code represents the basic operators
L and R, then the addition of the subiteration process is a trivial source term included in
the numerical code. The amount of extra computational work is directly proportional to
the number of subiterations required. Note that all operations of the original numerical
code, including boundary operators are applied to Qp. After the subiteration process is
adequately converged the solution Qn+1 is updated.

C. ESDIRK Schemes

A class of Implicit Runge-Kutta schemes4,5, 14 can be employed which are higher order
accurate and have L-stability performance. Starting with a Eq. 1 again, ∂tQ+F(Q, t) = 0 a,
we define a class of ESDIRK(m) schemes as

Qk = Qn −∆t

kX
j=1

ak,jF(Qj , tn + cj∆t) k = 1, . . . , S (23a)

Qn+1 = Qn −∆t

SX
j=1

bjF(Qj , tn + cj∆t) (23b)

bQn+1 = Qn −∆t

SX
j=1

bbjF(Qj , tn + cj∆t) (23c)

where S is the number of stages and the coefficients are presented in the Butcher15 tables
given below. The coefficients, ak,j are the stage weights, bj and bbj are the main and em-

bedded scheme weights, the solutions Qn+1 and bQn+1, are pth and (p− 1)th - order accurate,
and the ci are the weights for the explicit time evaluations (i.e., t + cj∆t) for each stage.
The stiffly accurate assumption,16 ak,j = bj, makes the solution, Qn+1 independent of any
explicit process within the integration step.

The general form of a Butcher Table (Table 1) is given below and represents a wide
variety of explicit/implicit multi-stage schemes of various order.

The specific form of a Butcher Table (Table 2) for the class of ESDIRK(m) schemes is
given below. Note, the first stage is trivial (Q1 = Qn) and that the diagonals are constant
and also that the last stage is the same as the final residual accumulation and therefore is
typically redundant.

aAn explicit dependency on time t has been added so that we can be specific as to time at which various stages are evaluated.
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c1 a11 0 0 0 0 0
c2 a21 a22 0 0 0 0
c3 a31 a32 a33 0 0 0
c4 a41 a42 a43 a44 0 0
c5 a51 a52 a53 a54 a55 0
1 a61 a62 a63 a64 a65 a66

b1 b2 b3 b4 b5 b6

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

Table 1. General Butcher Table

0 0 0 0 0 0 0
c2 a21 α 0 0 0 0
c3 a31 a32 α 0 0 0
c4 a41 a42 a43 α 0 0
c5 a51 a52 a53 a54 α 0
1 a61 a62 a63 a64 a65 α

a61 a62 a63 a64 a65 α

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

Table 2. Butcher Table For ESDIRK(m) Schemes

Each stage of the ESDIRK(m) scheme looks like an implicit 1st order accurate method,
e.g. ESDIRK3 with Qk to stage solution variable

Qk=1 = Qn −∆t a11F(Qk=1, tn + c1∆t) (24)

Qk=2 = Qn −∆t
“
a21F(Qk=1, tn + c1∆t) + a22F(Qk=2, tn + c2∆t)

”
Qk=3 = Qn −∆t

“
a31F(Qk=1, tn + c1∆t) + a32F(Qk=2, tn + c2∆t) + a33F(Qk=3, tn + c3∆t)

”
Qk=4 = Qn −∆t

“
a41F(Qk=1, tn + c1∆t) + a42F(Qk=2, tn + c2∆t) + a43F(Qk=3, tn + c3∆t) + a44F(Qk=4, tn + c4∆t)

”
For k = 1, implicitly solve for Qk=1. At stage k = 2, implicitly solve for Qk=2 with the
residual from stage k = 1, (a21F(Qk=1), tn + c1∆t), a source term. Each stage can be solved
with either of the two 1st order schemes described above, dual-time stepping or the Newton
scheme. For example, stage k = 2, replacing k = 2 with p+ 1

Qp+1 = Qn −∆t
“
a21F(Qk=1, tn + c1∆t) + a22F(Qp+1, tn + c2∆t)

”
→`

Qp+1 −Qp
´

+ ∆t a22F(Qp+1, tn + c2∆t) = − (Qp −Qn)−∆t a21F(Qk=1tn + c1∆t)

linearizing in Qp+1 about Qp and collecting terms we have,»
I + ∆t a22

∂F(Qp, tn + c2∆t)

∂Qp

– `
Qp+1 −Qp

´
= −∆t

„
Qp −Qn

∆t
+ a21F(Qk=1, tn + c1∆t) + a22F(Qp, tn + c2∆t)

«
(25)

Except for the weighting on the left hand side Jacobian term (a22) and the accumulated
fluxes with coefficient weightings (a21,a22), each stage can be attacked with the 1st order
dual or Newton subiteration scheme. Subiteration convergence requirements are similar
to the original dual/Newton approaches.

A dual timestepping approach to solving each stage can also be used. Adding a pseudo-
time derivative and rewriting at stage k of Eq. 23a,

∂τQ+
Qk −Qn

∆t
+

k−1X
j=1

ak,jF(Qj , tn + cj∆t) + ak,kF(Qk, tn + ck∆t) = 0 (26)
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In discrete pseudo-time τ (using iteration index s) with 1st order Euler implicit and replac-
ing Qk with Qk,s+1 in Eq. 26 b,

Qk,s+1 −Qk,s

∆τ
+
Qk,s+1 −Qn

∆t
+

k−1X
j=1

ak,jF(Qj , tn + cj∆t) + ak,kF(Qk,s+1, tn + ck∆t) = 0 (27)

Linearizing F(Qk,s+1) and writing in “Delta” form»„
1 +

∆τ

∆t

«
I + ak,k∆τA(Qk,s)

–“
Qk,s+1 −Qk,s

”
=

−∆τ

 
Qk,s −Qn

∆t
+

k−1X
j=1

ak,jF(Qj , tn + cj∆t) + ak,kF(Qk,s, tn + ck∆t)

!
(28)

Now the dual or Newton timestepping subiteration process can be applied at each stage,
where after subiteration convergence Qk,s → Qk

Results for the vortex propagation using an 80 grid point mesh, the 3rd order and
4th order ESDIRK schemes and the 5th order accurate central difference scheme (made
up of the 6th order flux differences and 5th order artificial dissipation) are shown in Fig. 3
after 100Cr for increasing time steps ∆t = 0.1, 0.2, 0.5, 1.0

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236 0 0

3
5

2746238789719
10658868560708

−640167445237
6845629431997

1767732205903
4055673282236 0

1.0 1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

bj
1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

b̂j
2756255671327
12835298489170

−10771552573575
22201958757719

9247589265047
10645013368117

2193209047091
5459859503100

Table 3. Butcher Table for ESDIRK3

D. Comments on Dual Time Stepping

One of the advantages of using a dual-time-stepping approach, is that upon adequate con-
vergence of the pseudo time step, (tau), the errors associated with approximations , such
as, factorization, fringe stencil interfaces (especially at split boundaries where the interface
is point to point), decoupled turbulence models, implicit linearization simplifications, etc.
are deduced below the level of the chosen time accuracy. As noted above, what level of con-
vergence is needed is still an open research area. But, for example in the OVERFLOW-D
mode the effect of parallization split boundaries are iterated out.
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(a) BF2 ∆t = 0.05 (b) BF2 ∆t = 0.05 (c) BF2 ∆t = 0.1 (d) BF2 ∆t = 0.1

(e) ESDIRK3 ∆t = 0.1 (f) ESDIRK3 ∆t = 0.1 (g) ESDIRK3 ∆t = 0.2 (h) ESDIRK3 ∆t = 0.2

(i) ESDIRK3 ∆t = 0.5 (j) ESDIRK3 ∆t = 0.5 (k) ESDIRK3 ∆t = 1.0 (l) ESDIRK3 ∆t = 1.0

(m) ESDIRK4 ∆t = 0.1 (n) ESDIRK4 ∆t = 0.1 (o) ESDIRK4 ∆t = 0.2 (p) ESDIRK4 ∆t = 0.2

(q) ESDIRK4 ∆t = 0.5 (r) ESDIRK4 ∆t = 0.5 (s) ESDIRK4 ∆t = 1.0 (t) ESDIRK4 ∆t = 1.0

Figure 3. Centerline Density and Contours, Computed Vortex: 100 Cr.


