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Two fifth-order spatial weighted essentially nonoscillatory schemes for the convective terms were added to the
OVERFLOW 2 implicit overset Navier—Stokes flow solver. The method used to incorporate the schemes is similar to
a monotone upstream-centered scheme for conservation laws and requires no modification of the viscous terms,
transport equations, or turbulence models in the code. The new flux calculation schemes were applied to problems
involving vortex convection, strong shocks, and large scale unsteady flows. The weighted essentially nonoscillatory
schemes were found to have much lower numerical dissipation/dispersion than traditional third-order spatial
monotone upstream-centered schemes for conservation laws. Both weighted essentially nonoscillatory schemes were
numerically robust over a wide range of Mach numbers when solved using the existing implicit schemes within
OVERFLOW 2. The weighted essentially nonoscillatory schemes also provided improved numerical accuracy over
traditional third-order spatial monotone upstream-centered schemes for conservation laws on the same
computational grid for all the applications examined here. The weighted essentially nonoscillatory schemes are 10—
30% more expensive than the third-order spatial monotone upstream-centered schemes for conservation laws

depending on choice of implicit solver.
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velocity

Roe averaged velocity

modified weights for WENO

spatial directions

smoothness indicator for WENO
vortex strength

optimal weights for WENO and WENOM
spatial direction increments

= small number

angular location in degrees
Spalart—Allmaras turbulence variable
density

vorticity magnitude

= local vorticity

=
2\l
Il

x, Ay, Az

E D DO BN TR 8 T
I

Subscripts

spatial index

counter index for WENO and WENOM weights
left state

= right state

NSRS
I

Superscripts

reference value
vortex center location
intermediate state
freestream value

Ref =
0

*

o0 =

Introduction

IGHER order numerical schemes offer two principal

advantages over lower order schemes. Higher order schemes
can provide more accurate solutions using fewer grid points for both
steady and unsteady flow solutions. Higher order schemes also
provide much lower numerical dissipation for unsteady flow
applications. The lower numerical dissipation allows small
disturbances to propagate over large distances. This is critical to
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several application areas including tip vortex tracking, large eddy
simulation (LES), high angle-of-attack flight, and acoustics. Current
efforts at modeling these unsteady problems with state-of-the-art
second- and third-order spatial algorithms require extremely fine
grids to minimize the numerical dissipation and dispersion. For
instance, if the grid spacing in a computational simulation were
reduced by a factor of 2, then for a fifth-order scheme the numerical
error should be reduced by a factor proportional to 23. To reduce
numerical errors to a comparable level using a second-order scheme
would require a corresponding reduction in grid spacing of
206-2) = 8. In three dimensions these estimates would dictate that a
factor of 8° = 512 times finer grid would be required. Considerations
such as this clearly demonstrate the potential advantages inherent in
the use of higher order schemes.

Higher order compact difference schemes [1-3] have been applied
to simple geometries and have been useful in developing a theoretical
understanding of these complex flows, but these algorithms are only
rarely applied to full aircraft-type geometries [4] because of the
difficulties in grid generation and solver numerical stability. The grid
metrics and volumes used in finite difference codes must be
compatible with the differencing scheme used for the viscous and
inviscid fluxes within the code or the resulting algorithm will not
satisfy the geometric conservation law property of [5]. If compact
differences are used to obtain higher order accuracy for the inviscid
fluxes, then the grid metrics and volumes must also be evaluated with
higher order accurate compact differences. All of the numerical
differences appearing in the viscous terms, species equations, and
turbulent transport equations must also be performed with higher
order accurate compact differencing to be compatible with the grid
metrics and volumes. All boundaries must also include the
appropriate higher order compact formulation or the order of the
scheme will be degraded. Overset flow solvers must also include
special logic to change the numerical stencil at hole boundaries
(points removed from the active computational domain) to assure
that only valid field and fringe points are included in the flux
reconstruction. Thus it is not a trivial exercise to add higher order
compact differencing to an existing code. In addition, central
difference compact schemes have very little built in numerical
dissipation and as such are unsuited for use on problems with
discontinuities without the addition of ad hoc smoothing or filtering
schemes which have to be tuned by hand for each new application of
the scheme.

Higher order inviscid fluxes can also be obtained by using finite
difference versions of essentially nonoscillatory (ENO) [6] and
weighted essentially nonoscillatory (WENO) [7,8] algorithms. In the
ENO approach, uniformly higher order accuracy is achieved by
using several different upwind biased candidate stencils of the
desired order of accuracy, whereas the nonoscillatory nature of the
scheme is ensured by selecting the single stencil for which the
interpolating polynomial reconstructed from the nodal values is
smoothest in some appropriate sense. In this manner the method
avoids interpolating across discontinuities and the resulting
overshoots and oscillations which typically result when using
higher order schemes in the presence of discontinuities. Thus, the
ENO scheme is highly nonlinear and data dependent. The next
advance in this line of algorithms came with the development of the
WENO family of numerical schemes. Liu et al. [7] observed that a
convex combination of all of the rth order candidate stencils used in
the ENO scheme can be used to create an (r + 1) order WENO
scheme. Smoothness indicators are used to set to zero the weight of
any stencil that contains a discontinuity. Jiang and Shu [8] developed
a set of optimal weights such that a (2r — 1)th order scheme could be
constructed. The ENO and WENO schemes are both robust and
accurate. When ENO and WENO schemes are used to solve systems
of equations both methods make use of upwinding in characteristic
fields and require a large number of projections (equal to the width of
the total stencil) onto the left and right eigenvectors of the flux
Jacobians at each grid half-node. These schemes require
substantially more floating point operations to construct the
numerical flux functions than their more traditional counterparts.

In this work the WENO methodology is used to increase the spatial
order of variable extrapolation to the grid half-nodes with an upwind
flux reconstruction algorithm in a form analogous to monotone
upstream-centered schemes for conservation laws (MUSCL) [9].
The final inviscid flux contribution to the residual is calculated from
the central difference of the reconstructed flux at the half-nodes, so
second-order central difference grid metrics and volumes are
compatible with this approach and sufficient to ensure that geometric
conservation is preserved. The approach adopted in this work can
easily be added to any finite difference flow solver that makes use of
the MUSCL framework without the need for extensive code
modifications.

In this study it is assumed that second-order terms are sufficient to
accurately capture the viscous term contribution. This may not be the
case for all flows and is left for a topic of future study. De Rango and
Zingg [10] demonstrated that using lower order convective flux
formulations for transport-type turbulence models does not affect the
accuracy of the flow solver when higher order methods are used for
the inviscid fluxes. Hence the transport turbulence models in the code
were not modified in this study. An option to use the fifth-order
WENO schemes for the convection terms of the species equations
was added to the code. All boundary conditions with the exception of
interpolated boundaries, overlap boundaries, and symmetry planes
are treated using the existing first-order approximations. The primary
goal of this effort is to develop a robust and accurate low numerical
dissipation algorithm that can be used in conjunction with complex
geometries and existing hybrid Reynolds averaged Navier—Stokes/
large eddy simulation (hybrid RANS/LES) turbulence models for
unsteady flow simulations.

Theory

HLLC Scheme

Nichols et al. [11] recently incorporated a Harten, Lax, and
van Leer contact (HLLC) [12] inviscid flux scheme into the
OVERFLOW 2 structured grid overset flow solver. The HLLC [12]
scheme is an approximate Riemann solver based on the HLL [13]
methodology. The HLL methodology divides the Riemann fan into
four regions separated by the fastest left (S; ) and right (S;) running
waves and a contact discontinuity (S,,) as shown in Fig. 1. The
resulting numerical flux is given by

F, if S, >0
F; if S, <0=<S
HLLC _ L L=VU=0y
Frg™ = Fy if Sy <0< S, M
Fr if Sp <0
Here F is the flux at a given face for one-dimensional flow by
pU
F=| pU*+p 2)
pUHy — p

The left (F;) and right (F'z) fluxes are based on the left (Q; ) and right
(Qg) state variables. The intermediate state variables (denoted by *)
are obtained from the Rankine—Hugonoit relations [14]

Fig. 1 Simplified Riemann fan for the HLLC scheme.
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(PE)k
1 (Sk — Ugr)pr
= Sk—S, Sz — Ur)(pU)g + (p* — pr) )
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The resulting intermediate fluxes are given by

Swupr
Fi =FQ;) =] SulpU); + p* &)
| Su((PE); + p*)
SuPr
Fr=F@Qp) =| SulpU)i + p* (6)
_SM((IOE); +p*) i
where
pr=p (U, =S )WU,—Sy) +pL
= pr(Ur = Sp)(Ug — Su) + Pr @)

The intermediate signal velocity (see Fig. 1) is given by

_ PrUR(Sg — Ug) — p U (S, —U.) + pr — pr
Pr(Sg —Ug) — p(S, — Up)

The signal velocities S; and Sy (see Fig. 1) are defined based on Roe
averaged quantities following Einfeldt [15]

Sy ®)

S, =min(U, —c;, U, — &,) ©)

SR:min(UR—cR,UR—E‘R) (10)

The flux difference at node i is then given by F; — F;_;. The HLLC
scheme has many nice features including the following:

1) exact preservation of isolated shock, contact, and shear waves;

2) positivity preserving for scalar quantities;

3) enforcement of the entropy condition;

4)no detailed knowledge of the eigenstructure of the flux-Jacobian
matrices required for flux reconstruction;

5) easily extendable to any passively advected scalar.

The conserved variables (p, pu, pv, pw, pe,) are stored at the
nodes (i) in OVERFLOW 2. The HLLC scheme requires flow
variable information at the half-nodes (i — 1/2, i 4+ 1/2) to construct
the contribution of the inviscid fluxes to the residual. The half-node
information is currently obtained using a MUSCL interpolation
scheme. The primitive variables (p,u,v, w,T) at the nodes are
interpolated to the half-node using the MUSCL scheme to obtain
first-, second-, or third-order spatial approximations of the primitive
variables. OVERFLOW 2 currently has three flux limiter choices to
suppress spurious oscillations during the solution process.

WENO

Interpolating flow variables using a fifth-order spatial WENO [16]
rather than a third-order spatial MUSCL scheme provides a relatively

inexpensive means to achieve a higher order numerical capability for
the inviscid fluxes. Here the primitive variables (p, u, v, w, T) are
interpolated to the grid half-nodes using the WENO scheme. The
weighting in the WENO scheme serves to provide limiting to
suppress spurious oscillations during the solution process. Using the
WENO scheme in this way avoids expensive projections onto
characteristic states associated with most WENO formulations. A
somewhat similar approach has been developed by Shen et al. [17] in
conjunction with a Roe flux difference scheme.

The formulation of the WENO interpolation used in this study
follows that of Henrick et al. [18] and Merriman [19]. The WENO
methodology views the fifth-order approximation of a function as
being built from a convex combination of three third-order
approximations as shown in Fig. 2. The fifth-order left and right
interpolated variables are then written as

AL _ 2 LALO LALI LAL2
qi%—woqi%-l—wlqi%—l—wzqi% 11
AR _ o RARO R AR R AR2
9y = W04, +w 9ivs +w; 9its (12)

The third-order approximations are constructed from the variables at
the nodes as

é,-Lf% =1qi2— g +4q;
é,ﬂ% = —%fh—l + %‘h + %ClH-l (13)

ALY 1 5 1
47t =341 T §qiv1 — gdi+2

CAI,I-Q& =103 — iv2 + Rqin1
éﬁ% = 1G> + 201 + 34 (14)

AR2 1 5 1
9in1 = 3qi+1 T 59 — 5qi-1

For relatively smooth regions of the flow the normalized modified
weights (w;) should return to the optimal weight values (y;). The
optimal weights y,, y;, and y, for fifth-order in space are given as 0.1,
0.6, and 0.3, respectively. The optimal values yield a true fifth-order
algorithm with low numerical dissipation, so it is desirable that the
modified weights approach the optimal values except in regions of
large discontinuities. Deviations from the ideal values cause the
numerical dissipation to increase to provide numerical stability. The
normalized modified weights are constructed using smoothness
indicators B, such that weights from those stencils with large
variations are minimized, whereas weights from stencils in smooth
regions approach the optimal values (y;). The smoothness indicators
for the left and right states are given by [7]

13 1
Bs = E(qFZ —2q;1 4+ q)* + Z(qi—Z —4q;-1 + 3q;)?

13 1
B = E(Qi—l —2¢; 4+ qis1)* + Z(qi—l —qis1)? s)
L 13 2 1 2
By = E(%‘ —2gi11 + qip2)” + 1(3%‘ =441 + qiv2)

AX
-~
i ! i+1

— & —0—— 86— 8 — 08—

1—1—1 Stencil 0
Stencil 1
Stencil 2

Fig. 2 Stencil for fifth-order WENO.
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13 1
BS = (@ir3 = 2qi2 + qix1)* + 5 (qivs — 44112 + 39141)°
12 4
r_ 13 2 1 2
B :E(qi+2_2qi+l +q;) +Z(qi+2_qi)

13 1
BE = E(QHI —2¢; 4 qi)* + Z(3Qi+1 —4q; + q;1)*
(16)

The modified weights are given by

~ Yk
Wy=—">2-3 17
SCERE
Here ¢ is a small number to avoid dividing by zero and is taken as
1.0x 107% in this study. Finally the modified weights are
renormalized by

Wy

Yo W,

This interpolation scheme is referred to as WENO in this paper.

(18)

Wy =

Mapped WENO

Recently it has been shown that the WENO scheme is only third
order accurate at critical points. Henrick et al. [18] developed a
mapping technique to modify the weighting near critical points to
maintain fifth order everywhere. The mapped weights are given by

g, = wi (Vi + vi = 3vawi + wy)
V}% + wi (1 —2y)

19)

The mapped weights are then renormalized with Eq. (18). The
modified weights in Egs. (11) and (12) are replaced with the mapped
weights in this scheme. The mapped weights as a function of the
modified weights for each of the ideal weights are shown in Fig. 3.
The mapping causes the mapped weights (g;) to approach the ideal
weights (y;) for a wide range of modified weights (w;). Thus the
mapped WENO scheme maintains fifth-order accuracy for a larger
region of the flow than the traditional WENO interpolation. This
scheme will be referred to as WENOM.

Overset Grid Implementation of WENO and WENOM

The WENO and WENOM schemes must be modified to
accommodate overset grids for implementation in OVERFLOW 2.
Here we briefly review elements of the overset mesh methodology
relevant to the work performed in this effort. For more information on
overset mesh technology see the review article by Meakin [20] and
references therein. Overset solvers divide points into three categories
denoted by the value of an integer IBLANK array:
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Fig. 3 Mapping function for WENO weights.

1) field points on which the flow solution is desired
(IBLANK = 1);

2) hole points that lie inside of bodies and are not of interest in the
solution (IBLANK = 0);

3) fringe points on which interpolated information is passed from
one domain to another (IBLANK = —1).

The IBLANK array is used to exclude hole points from
contributing to the solution in OVERFLOW 2 and also to prevent the
implicit updating of the solution at fringe points. The WENO and
WENOM schemes require a seven point stencil to create the fifth-
order spatial flux. Thus three interpolation points (triple fringe) are
required to support the fifth-order flux at interpolation boundaries.
Traditional second- and third-order spatial methods use a five point
stencil requiring two interpolation points (double fringe) at
interpolation boundaries. Most existing overset flow solvers and grid
assembly codes only support double fringe methods at this time. It is
desirable that the WENO and WENOM algorithms degrade spatial
accuracy gracefully if triple fringe boundaries are not available. To
aid in this transition, functions IB2 and IB3 are defined as

B2 = ABS(IBLANK,_, * IBLANK; * IBLANK )

20

IB3L = IB2t « ABS(IBLANK,_, * IBLANK, ) 0

Equation (20) yields /B2 = 1 if all the points are field or fringe

points, and 0 if any of the points is a hole point or off the edge of the

computational domain. Similarly, /B3t = 1 if points (i — 2, i — 1, i,

i+ 1, i+ 2) are all field or fringe points, and O otherwise. These
blanking values are incorporated into the WENO weights as

wh. = wf; * IB3F
wh = wh, « [B3F + (1 — IB3L) % IB2L 1, 1)

L _ L L
wy; = wy; * IB3;

where r; is the van Albada [21] flux limiter. Thus the half-node
approximation of the flux is fifth order if all of the / B3+ are 1. If either
orboth /B2L | and IB2F, | are 0 and /B2F is 1 the flux approximation
drops to third order with the van Albada flux limiter. Otherwise, the
flux approximation drops to first order if IB2F is 0. The final
approximation at the half-node is then given by

@lﬁ_% =q; + wéi(éff% —q;)+ wlLi(Zl,'L_:% —q)+ w%i@ﬁ% - q)
(22)

where a factor of ¢; has been added in and then subtracted from each
of the third-order approximations to ensure that the scheme reverts to
first order in the case when all of the weights have been set to zero.
The IBLANKING used for the right values is similarly done using
IBLANK values fromnodes (i — 1,i,i + 1,7+ 2, and i + 3).

The grid assembly code included in OVERFLOW 2 was modified
to allow triple fringe overset boundaries for both inner and outer
grids. The automatic grid decomposition routines used for load
balancing for parallel runs were also modified to produce triple fringe
overset boundaries if the WENO or WENOM flux schemes are
selected for that grid. The code currently uses second-order spatial
trilinear interpolation to update overset boundary points.

Computational Cost

OVERFLOW 2 contains six different implicit solvers and seven
different inviscid flux schemes. The fastest implicit solver is the
diagonalized implicit solution algorithm of Pulliam and Chaussee
[22]. The most robust and also the slowest implicit solver is the
unfactored symmetric successive overrelaxation (SSOR) implicit
algorithm of Nichols et al. [11]. The fastest inviscid flux scheme is
the second-order spatial central difference scheme with scalar
dissipation. The HLLC, WENO, and WENOM schemes are
compared to the central difference as a measure of computational
cost per time step for the fastest and slowest implicit schemes in the
code in Table 1. The timings are shown for computations on a
101 x 101 x 101 grid using a Pentium 4 processor with only 512 mb
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Table 1 Computational cost relative to a second-order spatial
central difference scheme with scalar dissipation

Implicit solution algorithm Flux scheme Relative cost
Diagonalized [22] HLLC 5%
Diagonalized [22] WENO 20%
Diagonalized [22] WENOM 35%
SSOR [11] HLLC 4%
SSOR [11] WENO 12%
SSOR [11] WENOM 19%

of cache. The additional cost of both WENO algorithms is not
prohibitive for production applications. Both of the WENO
algorithms were found to have similar convergence behavior and
numerical stability as the third-order spatial HLLC scheme for the
examples shown here.

Results

Inviscid Isentropic Vortex Convection

The ability to conserve both the vortex shape and strength is
important in many unsteady cases in which a shed vortex interacts
with bodies well downstream of the vortex origin. The following test
case [23] can be used to examine the relative level of numerical
dissipation and dispersion for inviscid flux algorithms. An isentropic
vortex of nondimensional strength I' =5 is centered on a uniform
grid of size 10 units by 10 units. Four grids will be used for most of
the results presented here: 101 x 101 (Ax=0.1), 81 x 81
(Ax =0.125), 61 x 61 (Ax =0.167), and 41 x 41 (Ax =0.25).
The vortex is allowed to convect downstream at a freestream Mach
number of 0.5 with a nondimensional time step [d#(U,/Lges)] of
0.01. The velocity, temperature, density, and pressure for the vortex
are given by

r _
U=ty =5 (z — zo) exp[0.5(1 — R?)]

r _
w = (x — x) expl0.5(1 — B)] (25)
2
— 2 _ .
Tsz_uexp(l_lﬂ) p=Tr1 p=p"
8ym

where R? = (x — x,)? + (z — 20)? and x, and z, define the location
of the vortex center at any given point in time. Here y is the ration of
specific heats. The grid is given periodic boundary conditions in the
flow direction. The vortex should complete one cycle on the grid
every 1000 time steps. All calculations used second-order time and
three Newton subiterations. The vortex is allowed to convect through
the grid 100 times. Most previous studies only allow the vortex to
complete five passes through the grid, so this is a much more rigorous
evaluation of the inviscid flux algorithms.

Grid size effects for uniform meshes are shown in Fig. 4. The
WENOM does an excellent job of maintaining the vortex for the
101 x 101 and 81 x 81 uniform grids, and produces a good result for
the 61 x 61 grid. The WENOM results are equivalent to the WENO
results on the next finer mesh indicating that the mapping provides a
less numerically dissipative scheme. The third-order results show
excessive dissipation even for the 101 x 101 grid. Pressure contours
after 100 passes through the grid are shown in Fig. 5 for the fifth-
order WENOM on four levels of Cartesian grids. The vortex is
preserved for the 101 x 101, 81 x 81, and 61 x 61 grids. The vortex
cannot be found on the 41 x 41 grid.

The error in pressure is defined as

error = |pmin — Pmin theureticall (26)

Pmin theoretical

The error is calculated after five passes through a given grid. The
minimum pressure tends to oscillate slightly as the center of the
vortex moves between nodes as it is convected downstream. The
minimum pressure is averaged over the last 100 time steps to remove
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Fig. 4 a) Effect of grid size on the minimum pressure for the convecting
vortex using the fifth-order HLLC with WENO. b) Effect of grid size on
the minimum pressure for the convecting vortex using fifth-order HLL.C
with WENOM. c) Effect of grid size on the minimum pressure for the
convecting vortex using third-order HLLC with the minmod limiter.

this oscillation. The error can be used to asses the spatial order of the
flux algorithms used in this study. The results for all three algorithms
are shown in Fig. 6. The slope of the HLLC curve in Fig. 6 indicates
that algorithm is approximately third order in space. The WENO and
WENOM curves both indicate that the algorithms are of
approximately fifth order in space. The absolute error of the
WENOM algorithm is less than that of the WENO algorithm for the
same grid.



NICHOLS, TRAMEL, AND BUNING

101x101 s

3095

/
/ a1xal
—
\_/ AT
7 —_—
//" B
// Y
f‘f ,'/ ]I
A
LS N
KN
R

/ /7 “‘\ )

Fig. 5 Pressure contours for the convecting vortex after 100 passes through the grid using the fifth-order HLLC with WENOM.
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Two skewed grids (non-Cartesian) were generated with 81 x 81
and 101 x 101 grid points. The minimum pressure for both grids is
shown in Fig. 7. The skewed grid causes the vortex to dissipate more
rapidly than the Cartesian grid for both of the WENO algorithms. The
third-order HLLC scheme is almost unaffected by the skewness of
the grid and again shows excessive dissipation of the vortex. The
vortex shows little dissipation for the 101 x 101 grid for WENO and
WENOM. The WENO algorithm produces a reasonable solution for
the 81 x 18 grid also. The WENOM algorithm produces a low
pressure and density in the core of the vortex for the 81 x 18 grid.
This nonphysical result can be seen in the pressure contours after 100
passes through the grid in Fig. 8.

The 81 x 81 uniform grid was decomposed into two grids: an
81 x 81 outer grid and an 61 x 61 inner grid. The center of the outer
grid was blanked out and aligned (point-matched) interpolation
boundaries were identified. Triple (TF), double (DF), and single (SF)
fringe interpolations were evaluated. This simulation required the
vortex to cross two interpolation boundaries for each cycle through
the grid and is a stringent test of the overset boundary capability.

—---- HLLC81x81 H
HLLC 101x101
»=— - WENO 81x81

= = WENO 101x101
=+ WENOM81x81
—— WENOM 101x101

0.6

Minimum Pressure

02 TR i

0 20 40 60 80 100
Passes Through Grid

Fig. 7 Minimum pressure for the convecting vortex using WENO and
WENOM showing skewed grid effect.

Results are shown in Fig. 9. The triple fringe point aligned WENO
and WENOM solutions are seen to agree with the single grid
solutions shown in Fig. 4. Reducing to single or double fringe is seen
to increase the dissipation of the vortex with WENO and WENOM.
The WENO and WENOM double fringe solution is still much better
than the third-order HLLC with double fringe.

A nonaligned 61 x 61 inner grid (points not coincident with the
outer grid) with a triple fringe interpolation stencil is shown in
Fig. 10. This grid system was used to evaluate whether the trilinear
interpolation (second order in space) used in OVERFLOW 2 would
be adequate for these higher order schemes. The triple fringe solution
shown in Fig. 11 is seen to produce more dissipation of the vortex
than the double fringe solution on the aligned grids for both WENO
and WENOM shown in Fig. 8. Both of the WENO schemes still
produce better results than the third-order HLLC scheme. This
indicates that a higher order interpolation method [24] is required to
maintain the high-order accuracy for the fifth-order schemes for
nonaligned overlap boundaries.
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Fig. 8 Pressure contours after 100 passes through the grid for the skewed grids.

Hypersonic Cylinder Bow Shock

The hypersonic bow shock experimental data of Holden et al. [25]
provide a good test of the ability of the numerical schemes to capture
extremely strong shocks and to predict heat transfer at high speeds.
The experiment was run at a freestream Mach number of 16.01, a
Reynolds number (based on a cylinder diameter) of 9.11 x 10%, a
freestream temperature of 77.8°R, and a wall temperature of 540°R.
The nitrogen test medium can still be considered a perfect gas at these
conditions. The flow over the 3-in. diam cylinder is laminar for this
case. The computational grid was 161 x 141 with a wall spacing
corresponding to the y* value of 0.1. This case has a temperature
ratio across the shock of about 50 and a pressure ratio across the
shock of about 300.

The flowfield was initialized with a single time step at a freestream
Mach number of 0.8. This transonic solution was then scaled to a
freestream Mach number of 16.01. This provided a small region of
subsonic flow at the nose of the cylinder so that the shock could form
and push away from the body. Two levels of grid sequencing were

used to set up the flowfield (299 iterations on the coarse level and 100
iterations on the midlevel). The case was run time accurately with a
time step of 3.6 x 107 s. Five Newton subiterations were used at
each time step with all of the inviscid flux algorithms.

The surface pressure coefficient is shown in Fig. 12. All of the flux
schemes compare well with modified Newtonian theory. Predicted
heat transfer is compared to data in Fig. 13. All three flux algorithms
do an excellent job in predicting the magnitude of the heat transfer for
this case. The L2 norm of the residuals is shown in Fig. 14a. All of the
algorithms have a similar convergence behavior and plateau after
about 850 time steps. Finally the drag coefficient convergence
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Fig. 9 Minimum pressure for the convecting vortex showing overset
interpolation effects for point aligned grids.

Fig. 10 Grid system for nonaligned overset computations for the
convecting vortex.
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Fig. 12 Pressure coefficient for the Holden bow shock test case on the
fine wall spacing grid.

history is shown in Fig. 14b. All of the flux schemes converge to the
same drag coefficient after about 500 time steps.

Weapons Internal Carriage and Separation L/D = 4.5 Bay

Unsteady computations for the weapons internal carriage and
separation (WICS) [26] L/D = 4.5 bay were performed for M =
0.95 and Re = 2.5 x 10°/ft. The weapons bay was 18 in. long, 4 in.
wide, and 4 in. deep. The bay was located behind a 15-in. flat plate in
the experimental configuration. The computational geometry was a
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Fig. 13 Heat transfer for the Holden bow shock test case on the fine wall
spacing grid.

b) drag coefficient convergence for the Holden bow shock test case.

flat plate that extended 15 in. upstream of the bay to match the
experimental geometry and 25 in. downstream of the bay. The sides
of the computational grid extended 50 in. on either side of the bay
centerline. The full bay geometry was modeled using wall functions
[27]. The entire computational grid had 1.5 x 10° points, and 3.2 x
10° points were used to discretize the bay. The wall spacing was
chosen as 0.0075 in., which corresponds to a y* of 50 on the
upstream plate. The wall spacing inside the bay was set to 0.075 in.
The larger wall spacing may be used inside the bay because the wall
shear stress is much lower there. The overset grid system was
generated to provide triple fringe point aligned interpolation
boundaries to maintain the fifth-order accuracy throughout the
computational domain for the WENO and WENOM solutions.
Double fringe point aligned interpolation boundaries were used for
the third-order HLLC solution.

The Spalart—Allmaras detached eddy simulation [28] hybrid
RANS/LES turbulence model was used in this study. The
calculations were run 12,000 iterations and the final 8192 time steps
were statistically analyzed. The equations were solved implicitly
using the unfactored SSOR solver in OVERFLOW 2. A time
accurate solution was obtained using second-order time differencing.
Three Newton subiterations were used to locally converge the
solution at each time step. All calculations were performed using the
1.6 x 107 s time step that was shown to be adequate for time
accuracy in [29].

Time-averaged Mach number contours with velocity vectors are
shown on the symmetry plane in Fig. 15 for the WENOM solutions.
The time-averaged flow has a large vortex in the front half of the bay
and a smaller vortex near the backwall. The location of the K12 and
K18 pressure transducers are also shown in Fig. 16. The time-
averaged pressure coefficient on the WICS bay ceiling and backwall
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K12

Fig. 15 Time-averaged Mach number contours on the WICS bay
symmetry plane.

is shown in Fig. 16. Both of the fifth-order results are in better
agreement with the data than the third-order solution. The overall
sound pressure level (OASPL) on the ceiling and backwall is shown
in Fig. 17. Again both the third- and fifth-order results are in
reasonable agreement with the data. Spectral results for the K12 and
K18 transducer locations are shown in Fig. 18. The K18 transducer is
in a dynamic region of the flow because of its proximity to the shear
layer above the bay. Seven data windows of 2048 samples were
averaged to produce the spectra that are presented. The error [28] in
the OASPL (defined as the difference of the individual window result
and the averaged result divided by the averaged result) was less than
1%. Both the third- and fifth-order results are in good agreement with
the data for the first two spectral peaks for the K18 location. The fifth-
order result continues to predict the proper acoustic level throughout
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Fig. 16 a)Time-averaged pressure coefficient on the WICS bay ceiling;
b) time-averaged pressure coefficient on the WICS bay backwall.

the entire measured frequency range while the third-order solution
begins to roll off at about 1500 Hz for the K12 transducer. This
improved frequency matching indicates that the fifth-order scheme is
resolving much smaller turbulent scales than the third-order
algorithm on the same computational grid.

Wing Tip Vortex

Laser-velocimeter measurements were made in the near-field
region of the wing tip in [30]. The experimental setup is shown in
Fig. 19 and consisted of a NACA 0012 wing with a rounded tip
attached to a wind-tunnel wall. The wing had a 4 ft chord (Ch) and a
3 ft semispan (b). The freestream velocity was 170 ft/s, the angle of
attack was 10 deg, and the Reynolds number based on the chord was
4 x 106,

The computational grid included the tunnel and the airfoil. An
overset grid system of seven grids composed of 5.8 x 10° points was
used in this study. The first point off the wall was set to y* = 1 on the
wing and on the tunnel wall that supports the wing. Wall functions
[25] were used for the other three tunnel walls and the first point off
the wall was set to y™ = 50. A triple fringe interpolation boundary
was used to allow the full 7 point stencil for the WENO schemes to be
maintained across interpolated computational boundaries. Tradi-
tional double fringe boundaries were used with the third-order HLLC
scheme. A Cartesian grid was used in the tip vortex region to locally
refine the grid system. This grid used the recommended spacings
from [30] (Ax = 0.01Ch, Ay = 0.005Ch, and Az = 0.005Ch) in the
vortex region. A cross section of the grid in the tip region is shown in
Fig. 20.
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Fig. 17 a) Overall sound pressure level for the WICS bay ceiling;
b) overall sound pressure level for the WICS bay backwall.
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Fig. 18 a) Sound pressure level spectrum for the K12 transducer
location for the WICS bay; b) sound pressure level spectrum for the K18
transducer location for the WICS bay.

The baseline Baldwin—Barth turbulence model was found to
provide too much eddy viscosity in the vortex core and overdamped
the vortex in [30]. Both the Baldwin—Barth and the Spalart—Allmaras
one-equation turbulence models use a turbulence production term of
the form

P() = C, 122 7)

where C,; is a constant, ¥ is the turbulence variable, and €2 is the
vorticity magnitude. The vorticity reaches a local maximum in the
core of a vortex, and hence the eddy viscosity increases rapidly.
Dacles-Mariani et al. [30] suggested the production term be replaced

—

1.813¢

Fig. 19 Experimental geometry.

Fig. 20 Computational grid in the tip region.

~y

“'

Fig. 21 Axial velocity contours.

by
P(P) = Cy V[ + Cyoy min(0, S, — Q)] (28)

where S, is the magnitude of the strain. The strain goes to zero in the
core of a vortex, so Eq. (28) converts the production term to a
dissipation term in the vortex core if C,,, is greater than 1. Dacles-
Mariani et al. [30] recommended C,,, = 2. Shuretal. [31] presented
a similar rotation and curvature correction to the Spalart—Allmaras
turbulence model that is also based on vorticity and strain rates. The
Ref. [31] correction, designated as the Spalart—Allmaras rotation and
curvature (SARC) model by the authors, was used in this study. The
modified form of the production term has almost no effect in
boundary layers and shear layers because the magnitude of the strain
and the magnitude of the vorticity are almost equal for these flows
and the correction term goes to zero.

The equations were solved implicitly using the unfactored SSOR
solver. A time accurate solution was obtained using second-order
time differencing. Three Newton subiterations were used to locally
converge the solution at each time step. The time step was chosen to
be 0.006 s. Low Mach number preconditioning was not used in this
study. Solution convergence was judged based on the forces on the
wing and normally required about 2500 iterations.

Axial velocity contours using the WENOM inviscid fluxes are
shown in Fig. 21. A vorticity isosurface using the WENOM inviscid
fluxes is shown in Fig. 22. The wing tip vortex is shown to be well
defined and persistent in the near field.

Fig. 22 Vorticity isosurface.
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The pressure coefficients and the axial velocity in the core of the
vortex for each of the turbulence models and each of the flux
algorithms are shown in Figs. 23 and 24 respectively. Both quantities
are underpredicted using the HLLC flux algorithm, whereas both of
the WENO schemes are in better agreement with the data. The
tangential velocity at x/Ch = 1.2 is shown in Fig. 25. Again the
HLLC scheme has overdamped the vortex while both WENO
schemes are in good agreement with the data. The current grid has 11
points across the viscous core of the vortex (R/Ch < 0.03).
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Fig. 25 Tangential velocity at x/c = 1.2.
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Fig. 26 Surface streak lines and pressure coefficient contours for the
forebody.

Inclined Ogive Cylinder

The simulation of turbulent crossflow separation about slender
bodies at high angle of attack has been challenging for computational
fluid dynamics methods. Traditional RANS turbulence models
produce excessive eddy viscosity in the core of the crossflow vortices
and overdamp the solutions. The experimental data of Lamont [32]
have been used to study this problem in [33,34]. The geometry
consisted of a two diameter tangent-ogive nose mounted on a 6-in.
diam cylindrical forebody. Surface pressure measurements were
obtained on the body for a range of angles of attack and Reynolds
numbers. The test condition used in the simulations conducted here
was a freestream Mach number of 0.2, an angle of attack of 20 deg,
and a Reynolds number based on a cylinder diameter of 4.0 x 10°.
Comparisons will be made to surface pressure dataatx/D = 5 and 6.

A grid refinement study was conducted in [33]. The computational
grid for the half-body used here had 151 points axially, 91 points
circumferentially (2 deg increment), and 121 points in the normal
direction. The wall spacing was 1.0 x 107> diameters (y* = 2) and
the grid had 101 normal points in the boundary layer and vortex
region. The grid used in this study is slightly finer than the grid
independent fine mesh used in [33]. The time step was chosen to be
At =0.114 s. Low Mach number preconditioning was not used in
this study. The SARC [31] turbulence model was used. Solution
convergence was judged based on the forces on the forebody and
normally required about 1000 iterations. All cases were run time
accurately and all solutions achieved a steady-state solution.

Streak lines on the surface of the forebody are shown along with
pressure coefficient contours in Fig. 26. The separation lines for the
primary and secondary vortices are clearly evident. Vorticity
magnitude contours at x/D =5 and 6 are shown in Fig. 27 for the
HLLC and WENOM flux algorithms using the SARC turbulence
model. The vortex is resolved with about 11 points across the vortex
for the WENOM algorithm at both locations. The HLLC algorithm
produces lower peak vorticity at both locations than the WENOM
algorithm. The surface pressure distributions for the HLLC and
WENOM flux algorithms and for the SARC turbulence model are
shown for x/D =5 and x/D =6 in Fig. 28. The experimental
surface pressure measurements are consistently higher than the
predictions on the windward side of the body. Similar trends have
been seen in other studies including [32,33]. Degani et al. [34] noted
that “. .. this is the result of the high-angle-of-attack flow condition,
in which the windward flow was directed into the pressure taps.” This
causes the measured pressures on the windward side to be higher than
the actual static pressure. The WENO and WENOM results are
almost indistinguishable and provide better agreement with the data
on the leeward side for both flux algorithms at both locations. The
pressure coefficient in the vortex core is shown in Fig. 29. The
WENO and WENOM algorithms are similar and predict a pressure
coefficient magnitude that is about 50% higher than the HLLC
algorithm.

Conclusions

Two fifth-order spatial WENO schemes for convected fluxes were
evaluated in the OVERFLOW 2 code. The schemes improved
solution quality over a third-order spatial HLLC scheme. The
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Fig. 28 a) Pressure coefficient for the forebody with the SARC
turbulence model at x/D = 5; b) pressure coefficient for the forebody
with the SARC turbulence model at x/D = 6.

improved spatial resolution and reduced numerical dissipation
allowed disturbances to be propagated for longer distances. Both
WENO schemes were found to be as numerically stable as the
extremely robust third-order spatial HLLC scheme. Both WENO
schemes performed well in the presence of extremely strong shocks
and for highly unsteady flow simulations.

The WENO scheme worked well on all combinations of grids
tested here. The WENOM scheme produced better results than the
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Fig. 29 Pressure coefficient in the vortex core for the forebody with the
SARC turbulence model.

WENO scheme on Cartesian grids, but produced an unphysical result
on an underresolved smoothly skewed grid for the convected vortex
case. Some form of correction for non-Cartesian grids is probably
required for the WENOM scheme.

Both of the fifth-order spatial WENO schemes performed better
than the third-order spatial HLLC scheme on the two three-
dimensional problems examined here. The WENO schemes
provided better agreement with data over a larger frequency range for
the unsteady bay problem. The WENO schemes also provided much
better agreement for the near-field wing tip vortex velocities and for
the pressure coefficient on the tangent-ogive forebody using the same
computational grid.

The WENO schemes and the triple fringe grid assembly routines
have been included in the production release of OVERFLOW 2.1.
The current trilinear interpolation used to generate the interpolated
values at noninjected overlap points was shown to cause degradation
in the order of accuracy of the solution for the vortex convection
case. A higher order interpolation scheme is required to remove this
error. This is left as an area for future work. Possible improvements
from higher order viscous terms should also be investigated in the
future.

Acknowledgments

The support of R. H. Nichols and R. W. Tramel by the U.S. Army
Space and Missile Defense Command and by the Department of
Defense (DoD) High Performance Computing Modernization
Program (HPCMP) Productivity Enhancement and Technology
Transfer (PET) is greatly appreciated.



3102 NICHOLS, TRAMEL, AND BUNING

References

[1] Visbal, M., and Gaitonde, D., “High-Order-Accurate Methods for
Complex Unsteady Flows,” AIAA Journal, Vol. 37, No. 10, 1999,
pp. 1231-1239.
doi:10.2514/2.591

[2] Rizzetta, D. P., and Visbal, M. R., “Large-Eddy Simulation of
Supersonic Cavity Flowfields Including Flow Control,” AIAA
Paper 2002-2853, June 2002.

[3] Gordnier, R., Visbal, M., Gursul, I., and Wang, Z., “Computational and
Experimental Investigation of a Nonslender Delta Wing,” AIAA
Paper 2007-894, Jan. 2007.

[4] Ladeinde, F., Alabi, K., Safta, C., Cai, X., and Johnson, F., “The First
High-Order CFD Simulation of Aircraft: Challenges and Oppor-
tunities,” AIAA Paper 2006-1526, Jan. 2006.

[5] Thomas, P., and Lombard, C., “Geometric Conservation Law and Its
Application to Flow Computations on Moving Grids,” AIAA Journal,
Vol. 17, No. 10, 1979, pp. 1030-1037.
doi:10.2514/3.61273

[6] Shu, C., and Osher, S., “Efficient Implementation of Essentially Non-
Oscillatory  Shock Capturing Schemes II (Two),” Journal of
Computational Physics, Vol. 83, July 1989, pp. 32-78.
doi:10.1016/0021-9991(89)90222-2

[7] Liu, X.-D., Osher, S., and Chan, T., “Weighted Essentially
Nonoscillatory  Schemes,” Journal of Computational Physics,
Vol. 115, Nov. 1994, pp. 200-212.
doi:10.1006/jcph.1994.1187

[8] Jiang, G.-S., and Shu, C.-W., “Efficient Implementation of Weighted
ENO Schemes,” Journal of Computational Physics, Vol. 126,
June 1996, pp. 202-228.
doi:10.1006/jcph.1996.0130

[9] van Leer, B., “Towards the Ultimate Conservative Difference Scheme,
V. A Second Order Sequel to Godunov’s Method,” Journal of
Computational Physics, Vol. 32, July 1979, pp. 101-136.
doi:10.1016/0021-9991(79)90145-1

[10] De Rango, S., and Zingg, D., “Higher-Order Spatial Discretization for
Turbulent Aerodynamic Computations,” AIAA Journal, Vol. 39, No. 7,
2001, pp. 1296-1304.
doi:10.2514/2.1472

[11] Nichols, R., Tramel, R., and Buning, P., “Solver and Turbulence Model
Upgrades to OVERFLOW 2 for Unsteady and High-Speed
Applications,” ATAA Paper 2006-2824, June 2006.

[12] Toro, E. F., Spruce, M., and Speares, W., “Restoration of the Contact
Surface in the HLL Riemann Solver,” Shock Waves, Vol.4,No. 1, 1994,
pp. 25-34.
doi:10.1007/BF01414629

[13] Harten, A., Lax, P., and van Leer, B., “On Upstream Differencing and
Godunov-Type Scheme for Hyperbolic Conservation Laws,” SIAM
Review, Vol. 25, No. 1, 1983, pp. 35-61.
doi:10.1137/1025002

[14] Batten, P., Clarke, N., Lambert, C., and Causon, D., “On the Choice of
Wavespeeds for the HLLC Riemann Solver,” SIAM Journal of
Scientific Computations, Vol. 18, No. 6, Nov. 1997, pp. 1553-1557.

[15] Einfeldt, B., “On Gudunov-Type Methods for Gas Dynamics,” SIAM
Journal on Numerical Analysis, Vol. 25, No. 2, April 1988, pp. 294—
318.
doi:10.1137/0725021

[16] Titarev, V., and Toro, E., “Finite-Volume WENO Schemes for Three-
Dimensional Conservation Laws,” Journal of Computational Physics,
Vol. 201, Nov. 2004, pp. 238-260.
doi:10.1016/].jcp.2004.05.015

[17] Shen, Y., Wang, B., and Zha, G., “Implicit WENO Scheme and High
Order Viscous Formulas for Compressible Flows,” AIAA Paper 2007-
4431, June 2007.

[18] Henrick, A., Aslam, T., and Powers, J., “Mapped Weighted Essentially
Non-Oscillatory Schemes: Achieving Optimal Order Near Critical
Points,” Journal of Computational Physics, Vol. 207, Aug. 2005,

pp. 542-567.
doi:10.1016/].jcp.2005.01.023

[19] Merriman, B., “Understanding the Shu—Osher Conservative Finite
Difference Form,” Journal of Scientific Computing, Vol. 19, Nos. 1-3,
2003, pp. 309-322.
doi:10.1023/A:1025312210724

[20] Meakin, R., “The Chimera Method of Simulation for Unsteady Three-
Dimensional Viscous Flow,” Computational Fluid Dynamics Review
1995, edited by M. Hafez and K. Oshima, Wiley, New York, 1995,
pp. 70-86.

[21] van Albada, G. D., van Leer, B., and Roberts, W., “A Comparative
Study of Computational Methods in Cosmic Gas Dynamics,”
Astronomy and Astrophysics, Vol. 108, No. 1, April 1982, pp. 76-84.

[22] Pulliam, T. H., and Chaussee, D. S., “A Diagonalized Form of an
Implicit Approximate Factorization Algorithm,” Journal of Computa-
tional Physics, Vol. 39, Feb. 1981, pp. 347-363.
doi:10.1016/0021-9991(81)90156-X

[23] Yee, H-C., Sandham, N., and Djomehri, M., “Low Dissipative High
Order Shock-Capturing Methods Using Characteristic-Based Filters,”
Journal of Computational Physics, Vol. 150, March 1999, pp. 199—
238.
doi:10.1006/jcph.1998.6177

[24] Sherer, S. E., and Scott, J. N., “High-Order Compact Finite-Difference
Methods on General Overset Grids,” Journal of Computational
Physics, Vol. 210, Dec. 2005, pp. 459-496.
doi:10.1016/].jcp.2005.04.017

[25] Holden, S. M., Kolly, J. M., and Martin, S. C., “Shock/Shock
Interaction Heating in Laminar and Low-Density Hypersonic Flows,”
ATAA Paper 96-1866, June 1996.

[26] Dix, R. E., and Bauer, R. C., “Experimental and Theoretical Study of
Cavity Acoustics,” Arnold Engineering Development Center (AEDC)
TR-99-4, May 2000.

[27] Nichols, R. H., and Nelson, C. C., “Wall Function Boundary Conditions
Including Heat Transfer and Compressibility,” AIAA Journal, Vol. 42,
No. 6, 2004, pp. 1107-1114.
doi:10.2514/1.3539

[28] Spalart, P., Jou, W.-H., Strelets, M., and Allmaras, S., “Comments on
the Feasibility of LES for Wings and on a Hybrid RANS/LES
Approach,” First AFOSR Conference on DNS/LES, edited by C. Liu
and Z. Liu, Greyden Press, Columbus, OH, Aug. 1997.

[29] Nichols, R. H., “Comparison of Hybrid RANS/LES Turbulence
Models for a Circular Cylinder and a Generic Weapons Bay,” AIAA
Journal, Vol. 44, No. 6, 2006, pp. 1207-1219.
doi:10.2514/1.17016

[30] Dacles-Mariani, J., Zilliac, G., Chow, J., and Bradshaw, P.,
“Numerical/Experimental Study of a Wingtip Vortex in the Near
Field,” AIAA Journal, Vol. 33, No. 9, 1995, pp. 1561-1568.
doi:10.2514/3.12826

[31] Shur, M. L., Strelets, M. K., Travin, A. K., and Spalart, P. R,
“Turbulence Modeling in Rotating and Curved Channels: Assessing the
Spalart-Shur Correction,” AIAA Journal, Vol. 38, No. 5, 2000, pp. 784—
792.
doi:10.2514/2.1058

[32] Lamont, P., “Pressures Around an Inclined Ogive Cylinder with
Laminar, Transitional, or Turbulent Separation,” AIAA Journal,
Vol. 20, No. 11, 1982, pp. 1492-1499.
doi:10.2514/3.51212

[33] Murman, S., “Vortex Filtering for Turbulence Models Applied to
Crossflow Separation,” AIAA Paper 2001-0114, Jan. 2001.

[34] Degani, D., Schiff, L., and Levy, Y., “Numerical Prediction of Subsonic
Turbulent Flows over Slender Bodies at High Incidence,” AIAA
Journal, Vol. 29, No. 12, 1991, pp. 2054-2061.
doi:10.2514/3.10841

Z. Wang
Associate Editor


http://dx.doi.org/10.2514/2.591
http://dx.doi.org/10.2514/3.61273
http://dx.doi.org/10.1016/0021-9991(89)90222-2
http://dx.doi.org/10.1006/jcph.1994.1187
http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.2514/2.1472
http://dx.doi.org/10.1007/BF01414629
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1137/0725021
http://dx.doi.org/10.1016/j.jcp.2004.05.015
http://dx.doi.org/10.1016/j.jcp.2005.01.023
http://dx.doi.org/10.1023/A:1025312210724
http://dx.doi.org/10.1016/0021-9991(81)90156-X
http://dx.doi.org/10.1006/jcph.1998.6177
http://dx.doi.org/10.1016/j.jcp.2005.04.017
http://dx.doi.org/10.2514/1.3539
http://dx.doi.org/10.2514/1.17016
http://dx.doi.org/10.2514/3.12826
http://dx.doi.org/10.2514/2.1058
http://dx.doi.org/10.2514/3.51212
http://dx.doi.org/10.2514/3.10841

