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Conventional �nite-di�erence methods are the main workhorse of NASA's OVERFLOW

code. Recent enhancements in the development, implementation and analysis of simple

high-order accurate �nite-di�erence techniques within OVERFLOW are documented here.

Results are presented for simple vortex propagation to demonstrate the salient features

of the methods, and more complex three-dimensional rotorcraft 
ows are used to validate

their usefulness in real applications.

I. Introduction

The focus in this paper is on the development of high order accurate �nite-di�erence operators as im-
plemented in OVERFLOW,1 a three-dimensional, Reynolds-averaged Navier-Stokes code using an overset
approach for large scale, complicated geometry applications. Implementation issues associated with larger
di�erence stencil widths, parallelization, overset strategies, implicit time integration and e�ects on accuracy,
stability and convergence will be discussed. Periodic vortex propagation is used to demonstrate the salient
features of the methods, and a complex application for an isolated rotor in hover will be presented showing
improvements in accuracy and e�ciency for practical problems.

II. Approach and Results

II.A. Equations

The two-dimensional Euler equations on a Cartesian grid (no assumption is made as to the orientation of
axes, so some generality is maintained) are used as the starting point for the development and to establish
notation. The extension to the three-dimensional general curvilinear coordinate form of the Navier-Stokes
equations, while not completely straightforward, is consistent with the development presented here.

The two-dimensional Euler equations on a Cartesian grid are

@tQ+ @xE + @yF = 0 (1)

so that, F(Q) = @xE + @yF with
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2
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with Q the conservative variables, density �, x-momentum �u, y-momomtum �v and energy e, pressure
p = (
 � 1)(e� 0:5�(u2 + v2)) and 
 = 1:4 for a perfect gas,
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II.B. Test Case

An isolated vortex propagation problem is used as the test case. A two-dimensional (2D) uniform grid
is assumed, with periodic boundary conditions in x and simple Dirichlet conditions in y enforced on a
rectangular domain. The domain size for the results shown below is 10 � 10 units where the vortex core
size (diameter) Cd is de�ned as 1:0 unit. The equations for the initial condition are a �nite core vortex
embedded in a free stream 
ow Q1 = (�1;M1; 0; e1) with �1 = 1:0;M1 = 0:5; p1 = 1



; and T1 = 1:0.

The perturbed (by the vortex) �eld is

T = T1 �
V 2
s (
 � 1)

16Gs
�2
e2Gs(1�r

2)
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1

(
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with the vortex strength Vs = 5:0 and the Gaussian width scale Gs = 0:5 . The vortex is initially centered at
x0 = 5:0 and y0 = 5:0 and r =

p
(x� x0)2 + (y � y0)2. Figure 1 shows density contours of the initial vortex,

which has a period of 10 Cd and unless stated all computed results are after 30 Cd or three revolutions of
the vortex across the domain.

Figure 1. Density Contours, Initial Vortex

II.C. OVERFLOW: Overset Concepts

OVERFLOW1 is a three-dimensional time-marching implicit Navier-Stokes code that can also operate in
two-dimensional or axisymmetric mode. The code uses structured overset grid systems. Several di�erent
inviscid 
ux algorithms and implicit solution algorithms are included in OVERFLOW. The code has options
for thin layer or full viscous terms. A wide variety of boundary conditions are also provided in the code. The
code may also be used for multi-species and variable speci�c heat applications. Algebraic, one-equation, and
two-equation turbulence models are available. Low speed preconditioning is also available for several of the
inviscid 
ux algorithms and solution algorithms in the code. The code also supports bodies in relative motion,
and includes both a six-degree-of-freedom (6-DOF) model and a grid assembly code. Collision detection and
modeling is also included in OVERFLOW. The code is written to allow use of both MPI and OpenMP
for parallel computing applications. OVERFLOW has two basic operational modes. The code can still
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be run in the original OVERFLOW mode, which requires that all grids be supplied and assembled using
PEGASUS2 prior to the start of the solution process. The other option is OVERFLOW-D3,4 mode which
requires additional input �les and inputs to control the Domain Connectivity Framework (DCF)4,5 grid
assembly, o�-body grid generation, and 6-DOF or speci�ed motion simulation. Only the near-body grids need
to be supplied in OVERFLOW-D mode since Cartesian outer grids are automatically generated prior to grid
assembly using DCF. b

References7{10 contain details of the various options, methods and features of the code. The development
presented here is consistent with recent work by Nichols, Tramel and Buning11 on high order WENO schemes.
The discussion here, will be restricted to generic features of the overset process which are a�ected by the
choices of di�erence operators and arti�cial dissipation schemes.

A few de�nitions are taken from the OVERFLOW manual.6 In the setting of a �nite-di�erence approach
to spatial derivatives and the overset approach used in OVERFLOW, grid points can be classi�ed as

� Field points: points on which the di�erential equations will be solved.

� Blanked-out points: points inside bodies or holes, where the solution is not computed or is ignored.

� Fringe points: inter-grid boundary points where solution values are obtained via interpolation from
another grid. Single-fringe points have only one layer of interpolation points at a boundary. Double-
fringe points have two layers of interpolated points at a boundary, triple have three, etc. Double-fringe
points are the default in the code and allow 2nd and 3rd order 
ux algorithms to maintain their full �ve-
point stencil across interpolated boundaries. The 5th order schemes require a triple-fringe to maintain
their seven-point stencil at interpolated boundaries. Reducing the number of fringe layers will result
in the 
ux algorithm losing accuracy at interpolated boundaries.

� Donor points: points contributing to interpolation stencils providing interpolated data to fringe points.

� Orphan points: fringe points without valid donors, resulting from hole cutting failure (no possible
donor) or only poor quality donors being available (insu�cient overlap). In OVERFLOW, solution
values at orphan points are set by averaging values from neighbors in the computational grid.

The particular focus here is on the fringe point requirements. As the stencil width of a particular �nite-
di�erence operator increases, the number of required fringe points increases. For example, let j be the grid
point index, a �ve point stencil �nite-di�erence operator using points (j�2; j�1; j; j+1; j+2) applied at an
overset boundary on the left at j = 3 would by de�nition have (j = 3; 4; 5; : : : ) as �eld points and (j = 1; 2)
as fringe points. If the di�erence stencil is expanded to seven points, then an additional left fringe point
is required. In general, the hole cutting and interpolation are automatically handled by the OVERFLOW
process, but the requirement on fringe points needs to be satis�ed based on the required stencil size for the
chosen operators. In the subsequent development, fringe point requirements will de�ned.

III. Di�erence Operators

Second order �nite di�erences and third order arti�cial dissipation is the default approach employed in
OVERFLOW, as de�ned below. Let j; k be the index counters for the x and y directions, respectively. Then
Qj;k represents a single grid point value of Q. The di�erence equation is now

@tQj;k + �xEj;k + �yFj;k = 0 (4)

where �x and �y represent �nite di�erence operators. Results were obtained with 40 grids points in both
directions, unless otherwise speci�ed.

III.A. Central Flux Di�erences

The basic central �nite di�erence operator for the inviscid 
ux terms are de�ned below. The 
uxes E;F are
formed and di�erenced to 2nd order as, e.g. in x

@xE � � c2
x Ej;k =

Ej+1;k � Ej�1;k

2�x
(5)

bTaken directly from the OVERFLOW Manual6
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where c2 designates a 2nd order central di�erence operator. Flux di�erences to 2nd order require 1 fringe
point.

A fourth order accurate option uses (the k part of the indices's is dropped for brevity)

@xE � � c4
x Ej =

�Ej+2 + 8Ej+1 � 8Ej�1 + Ej�2

12�x
(6)

Flux di�erences to 4th order require 2 fringe points.
A sixth order accurate option uses

@xE � � c6
x Ej =

Ej+3 � 9Ej+2 + 45Ej+1 � 45Ej�1 + 9Ej�2 � Ej�3

60�x
(7)

Flux di�erences to 6th order require 3 fringe points.

III.B. Arti�cial Dissipation

Numerical computations require some form of arti�cial dissipation, whether it is added explicitly to a central
di�erence of the inviscid 
uxes or implicitly by using an upwind operator scheme.

The standard method used in OVERFLOW is a mixed 2nd and 4th derivative arti�cial dissipation em-
ploying a pressure gradient switch and spectral radius scaling.12 Expanding the de�nition of the arti�cial
dissipation to include a higher order term which will result in a less dissipative operator and allow for up to
a 5th order scheme.

The arti�cial dissipation term is

rx (�j+1 + �j)
�
�
(2)
j �xQj � �

(4)
j �xrx�xQj + �

(6)
j �xrx�xrx�xQj

�
=�x (8)

with

rxQj = (Qj �Qj�1); �xQj = (Qj+1 �Qj) (9)

�
(2)
j = �2max(�j+1;�j ;�j�1) (10)

�j = jpj+1 � 2pj + pj�1j=jpj+1 + 2pj + pj�1j

�
(4;6)
j = max(0;max(�4; �6)� �

(2)
j ) (11)

Similar terms are used in the y direction. The term �j is a spectral radius scaling and is de�ned as �j =

juj + aj j with a =
p

p=�, the speed of sound.

Before discussing the suggested values of � in Eq. 8, the implication of the various terms is examined.

Letting �j+1+�j = 1:0, the term with coe�cient �
(2)
j is controlled by both the constant �2 and the gradient of

pressure which is a switch to turn on 1st order dissipation at discontinuities, e.g. shocks. Letting �4 = �6 = 0,

�j = 1:0 and �
(2)
j = � = constant, Eq. 8 becomes

�

�x
rx�xQj =

�

�x
(Qj+1 � 2Qj +Qj�1) � �(�x)@xxQj

a 1st order term. This term would require one single fringe point.

Examining the e�ect of the second term in Eq. 8 by letting �2 = �6 = 0 and �
(4)
j = � = constant,

�

�x
rx�xrx�xQj =

�

�x
(Qj+2 � 4Qj+1 + 6Qj � 4Qj�1 +Qj�2) � �(�x)3@xxxxQj

The arti�cial dissipation de�ned by this term in Eq. 8 is a 3rd order term and represents a 4th derivative
dissipative operator and would require two fringe points for implementation.

Finally, the third term in Eq. 8, letting �2 = �4 = 0 and �
(6)
j = � = constant, leads to

�

�x
rx�xrx�xrx�xQj =

�

�x
(Qj+3 � 6Qj+2 + 15Qj+1 � 20Qj + 15Qj�1 � 6Qj�2 +Qj�3) � �(�x)5@xxxxxxQj
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a 5th order accurate term representing a 6th derivative, requiring three fringe points.
The generalized form of arti�cial dissipation shown in Eq. 8, uses a mixture of 2nd , 4th and 6th derivative

arti�cial dissipation, employing a pressure gradient switch and spectral radius scaling. Note that the stencil
widths and fringe points requirements are consistent with up to a 6th order accurate 
ux di�erence operator.
Typical values of the constants are �2 � 1 (for use in 
ows with shock waves), �4 � 0:01 for 3rd order accuracy
(if �6 = 0) and �6 = 0:001 for 5th order accuracy (if �4 = 0).

The combination of central 
ux �nite di�erences of various orders with the various choices of order and
arti�cial dissipation type result in accuracy order options in OVERFLOW (for convenience of discussion the
OVERFLOW input parameter variable FSO is used to designate the order of accuracy options)

� FSO=2 Uses 2nd order 
ux di�erence Eq. 5 and 3rd order arti�cial dissipation, �4 6= 0; �6 = 0. Fringe
stencil requirement 2.

� FSO=3 Uses 4th order 
ux di�erence Eq. 6 and 3rd order arti�cial dissipation, �4 6= 0; �6 = 0. Fringe
stencil requirement 2.

� FSO=4 Uses 4th order 
ux di�erence Eq. 6 and 5th order arti�cial dissipation, �4 = 0; �6 6= 0. Fringe
stencil requirement 3.

� FSO=5 Uses 6th order 
ux di�erence Eq. 7 and 5th order arti�cial dissipation, �4 = 0; �6 6= 0. Fringe
stencil requirement 3.

In practice, FSO=5, the 6th order central di�erence scheme, Eq. 7, coupled with 5th order arti�cial
dissipation, Eq. 8, has been quite e�ective for many applications of interested, e.g., resolving vortex 
ows
and rotor-craft wakes. Dissipation coe�cients of �2 = 0:0, �4 = 0:0 and �6 = 0:001 are typical. As shown
below, this scheme does a good job in minimizing both vortex dissipation and dispersion error, relative to
the 2nd order di�erence scheme with 3rd order dissipation, but its cost is only about 10% more work. It
does require 3 fringe cells rather than 2, which means a larger volume of data is exchanged at inter-block
boundaries, but in general tests have shown the improved accuracy outweighs this relatively minor extra
communication cost.

III.C. Vortex Propagation Results with Central Finite Di�erences and Arti�cial Dissipation

There are two types of error of concern, propagation error (sometimes described as dispersion error or
convective error) and amplitude error (dissipation error, di�usion error). For the vortex propagation example
problem, the convective error is directly a product of the choice of 
ux di�erences and the dissipation error
comes from the arti�cial dissipation. The choice of the time advance scheme also introduces convective and
dissipation error, but will not be discussed further here. For all the results presented in this section, a time
step and time advance scheme was chosen which reduces the temporal error below the spatial �nite di�erence
errors.

Figure 2a shows a centerline cut (across the vortex core y location) of density compared with the exact
solution after 60 Cd demonstrating typical convective error and dissipation error. Figure 2b shows density
contours, where the black contours are the exact solution and the colored contours are the computed solution
after 3 passes of the vortex through the domain. The vortex core has decayed due to the level of arti�cial
dissipation and the location of the core is compromised by the convective errors.

The decay of the vortex core is directly related to the level of arti�cial dissipation. Reducing the coe�cient
of the arti�cial dissipation will reduce the core decay, but at the expense of robustness, stability, and increased
oscillations (non-smoothness or the generation of high frequency error). Figure 3 shows a comparison using
the 4th order central di�erence scheme for the 
uxes on a 20 grid point after 10 Cd, using �4 = 0:01 and
�4 = 0:001. Now the level of arti�cial dissipation can be controlled by � and the behavior as �x ! 0 is
3rd order, but the actual form of the error is a 4th derivative, @xxxxQj . The lower arti�cial dissipation leads
to high frequency oscillations and eventually that case diverges. An analysis can be found in Pulliam12

of arti�cial dissipation schemes for both stability and robustness within the framework of an implicit 
ow
solver, e.g. OVERFLOW.

Figures 4a,b shows the result of integration using 2nd order central di�erences for the 
uxes and 3rd order
arti�cial dissipation (FSO=2) with �2 = �6 = 0 and �4 = 0:04 (a more typically value used in OVERFLOW)
which has an overall 2nd order accuracy. The main e�ect of the 
ux di�erencing choice on the vortex is
dispersion error resulting in a displacement of the vortex core. A line cut across the vortex centerline is
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(a) Centerline Density (b) Density Contours

Figure 2. Convective Error Example: 60 Cd; FSO = 2; �4 = 0:01

shown in Fig. 4a comparing the exact and computed solutions. The computed vortex has decayed, mainly
due to the arti�cial dissipation. The computed vortex core is displaced due to the dispersion error of the
�nite di�erence operator, note the core location o� the centerline in Fig. 4b. Figures 4c,d shows the result of
integration using 4th order central di�erences and the 3rd order arti�cial dissipation, (FSO=3, �2 = �6 = 0
and �4 = 0:04 ). Again the computed vortex has decayed (mainly due to the arti�cial dissipation), but the
displacement evident in the 2nd order results is reduced, as a result of the more accurate convection properties
of the 4th order scheme. Figure 4e,f shows the result of integration using 6th order central di�erences and
5th order arti�cial dissipation, (FSO=5, �2 = �4 = 0 and �6 = 0:001 ). The dispersion and dissipation errors
are greatly reduced and now the vortex more accurately tracks the centerline and strength.

III.D. 3rd Order HLLC and 5th Order WENO Schemes

Nichols, Tramel, and Buning.11 presented the development, implementation and assessment of a 3rd order
HLLC scheme and 5th order WENO scheme and variants of those methods, including the various limiters
employed. Details of the implementation in OVERFLOW can be found in that reference and will not be
repeated here. Results from the 3rd order HLLC and 5th order WENO scheme for 30Cd are shown in Fig. 5.
The 3rd order HLLC schemes is as dissipative as the 3rd order central scheme, FSO=3, while the 5th order
WENO scheme is consistent with the 5th order central method, FSO=5.

IV. Boundary Conditions, Domain Connectivity, Parallelization Splittings

The implementation of higher order wider stencil �nite di�erence operators requires careful considera-
tions, especially in the boundary regions of the OVERFLOW process. There are a number of boundary
conditions/operators to consider. The physical boundaries, such as walls, in
ow/out
ow, symmetries and
periodicity, are handled appropriately in OVERFLOW and stencils for di�erence operators are applied which
respect the boundary type. OVERFLOW uses the overset approach to domain decomposition to handle the
topology of geometries and for parallelization. There are two types of domain connectivity boundaries found
in OVERFLOW. The initial overset grids are interfaced either with predetermined Pegasus2 connectivity
or through the internally generated Domain Connectivity Framework (DCF)5 and X-rays. In both cases,
appropriate fringe points are added so that boundaries stencils for the �nite di�erences are not degraded.
In addition to the overset grid systems decomposition, the initial grids may be split to achieve parallel load
balancing. Based on the number of processors (cores, threads) a domain splitting occurs which may break
each initial grid multiple times until a larger number of grids below a target grid size are produced. This new
system of grids is then packed onto the processors to produce a better load balance of work for good parallel
e�ciency. In the splitting process, (appropriate for the chosen di�erence scheme) additional fringe points
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(a) Centerline Density, � = 0:01 (b) Density Contours, � = 0:01;

(c) Centerline Density, � = 0:001 (d) Density Contours, � = 0:001

Figure 3. Dissipation Error Example : 10 Cd.

are added at each split boundary to provide an interface with point to point injection domain connectivity.
This process of adding fringe points does produce a slight overhead in terms of memory, but it makes the
implementation of the higher order operators seamless at the split boundaries.

In places where either a physical boundary requires a smaller stencil size (at a solid wall the next point
above the surface is an interior point without fringe support above 1) or the domain connectivity fails to
produce multiple fringe points, the di�erence stencils are reduced appropriately in order as the boundary is
approached. For example, assuming indexing j = 1; 2; 3; 4; � � � , if the 6th order central 
ux di�erence, Eq. 7,
is used for interior points j � 4, then at j = 3 the 4th order central di�erence, Eq. 6 is used and at j = 2,
the 2nd order central di�erence, Eq. 5 is applied. The arti�cial dissipation operators are handled in similar
fashion, as are the other methods, 3rd order HLLC and 5th order WENO, see Nichols,et al.11

V. Implication of High Order Operators to Implicit Time Advance Methods

OVERFLOW employs an implicit approximate factorization13,14 scheme for the time integration. This
requires both the linearization of the 
ux derivative terms, arti�cial dissipation operators, and viscous terms,
as well as the solution of the implicit operators which are either block tridiagonal matrices in each coordinate
direction or scalar pentadiagonal operators in the diagonalized approach of Pulliam and Chaussee.15 It is
a common practice to reduce the order of accuracy of the space derivative terms in the implicit operators
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(a) Centerline Density, FSO=2, 2nd Order (b) Density Contours, FSO=2, 2nd Order

(c) Centerline Density, FSO=3, 3rd Order (d) Density Contours, FSO=3, 3rd Order

(e) Centerline Density, FSO=5, 5th Order (f) Density Contours, FSO=5, 5th Order

Figure 4. Computed Vortex: 30 Cd.
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(a) Centerline Density, 3rd Order HLLC (b) Density Contours, 3rd Order HLLC

(c) Centerline Density, 5th Order WENO (d) Density Contours, 5th Order WENO

Figure 5. Computed Vortex: 30 Cd.
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to control the band width of the matrices and therefore reduce the computational expense. For example,
OVERFLOW also has an hybrid SSOR time advance algorithm based on a 1st order accurate form of
Steger-Warming 
ux splitting,16 usually used with the 3rd order HLLC or 5th order WENO schemes.11

Depending on the implicit operator band width, 3 for block tridiagonal and 5 for scalar pentadiagonal, the

ux derivative operator in the implicit matrix can only support either a 3 point stencil or a 5 point di�erence
stencil. Therefore, in the block tridiagonal option a 2nd order di�erence is used for the 
ux derivatives,
Eq. 5, even though a higher order operator may be used for the right-hand-side (residual) 
ux derivatives,
for example, Eq. 7. Similarly, for the diagonalized scalar pentadiagonal scheme, a 4th order di�erence, Eq. 6,
is used for the implicit operator in combination with a residual 
ux derivatives of 4th order or higher. Linear
analysis14,17 shows that these options are stable.

The arti�cial dissipation, Eq. 8, is subject to similar restrictions on the implicit operator side. The
implicit linearization of the arti�cial dissipation is discussed in Pulliam.12 OVERFLOW uses a reduced
operator approach where for the block tridiagonal scheme, a 1st order 3 point stencil dissipation operator
is used in the implicit implementation, e�ectively, � = 1; �2 6= 0; �4 = 0; �6 = 0, in Eq. 8. In the scalar
pentadiagonal option, the linearized arti�cial dissipation operator can be extended to 5 points, the reduced
form is e�ectively equivalent to Eq. 8 with � = 1; �2 = 0; �4 6= 0 and �6 = 0. Linear analysis12 shows that
the coe�cients for the implicit linearized arti�cial dissipation needs to be at least 2 times the coe�cients
used on the 
ux terms in the residual and in fact the conservative choice in OVERFLOW is a factor of 4.

VI. Viscous Terms and Metrics

The viscous terms in OVERFLOW are di�erenced to 2nd order, including the cross terms. Even though
higher order treatment of the viscous terms is possible, (cross terms may be complicated), the improved
accuracy may not be justi�able or measurable. For realistic geometries, the viscous e�ects are usually
restricted to the boundary layer regions where wall normal spacing is small compared to the other coordinate
directions. Second order accuracy should be su�cient in the wall normal regions and viscous terms negligible
in the other directions. Even in the case of DES18 or LES19 computations where homogeneous turbulence
concepts dominate, it is not clear whether higher order accurate viscous treatment will pay dividends (in DES
for example, the grid requirements are dictated more by eddy resolution concepts than by simple accuracy
considerations).

The metric (generalized coordinates) terms are computed to 2nd order accuracy in OVERFLOW. In the
OVERFLOW-D mode o�-body grids are uniform Cartesian and therefore, the metrics are constant and will
not a�ect accuracy. For generalized curvilinear grids, the use of 2nd order metrics means that the formal
accuracy is 2nd order, even when higher order di�erences are used for the 
uxes. In general though, grids
are assumed to be smoothly varying, have adequate resolution in appropriate regions and so even though
the formal accuracy would be 2nd order due to the metrics, the increased 
ux di�erence accuracy will be
e�ective.

Obviously, other approximations and simpli�cations (e.g., boundary conditions, domain connectivity and
interpolations) a�ect the overall formal accuracy of OVERFLOW. In fact, it would be incorrect to classify
OVERFLOW with the recent improvement, as a high order accurate code. The higher order 
ux di�erences
and reduced arti�cial dissipation which can be used with up to 5th order accuracy do improve the overall
accuracy of the computations without degrading the robustness, stability, or convergence.

VII. Complex Flow Results

A large selection of application examples in two and three dimensions have been computed using the
5th order scheme described above.20,21 A representative result is given here for the Tilt Rotor Aeroacoustics
Model (TRAM), a 1/4-scale three blades and hub component of the V-22 Osprey tiltrotor aircraft.22,23

Extensive details of the physical problem, geometry, experimental data and previous numerical studies can
be found in Potsdam and Strawn.24 The goal is to compute the steady hover mode of the TRAM blade
system. Therefore, the OVERFLOW computations were performed in a steady non-inertial frame where
the observer is moving with the blades and the 
ow appears stationary with respect to the observer. The
one-equation Baldwin-Barth turbulence model was used with corrections, Potsdam and Pulliam.25

The three-bladed TRAM rotor system is shown in Figure 6, along with a coordinate slice showing the
near body curvilinear and o� body grid system. In terms of the structured overset methodology employed by

10 of 14

American Institute of Aeronautics and Astronautics



Figure 6. TRAM V22 geometry, Hover

Case �L1 No. of grid points No. of grids

Small 0:1 � Ctip 13,692,987 50

Medium 0:05 � Ctip 58,426,144 70

Large 0:025 � Ctip 379,761,734 188

Huge 0:0125 � Ctip 3,087,812,624 194

Table 1. Grid Size for Di�erent Re�nement Levels

OVERFLOW, near-body (NB) curvilinear structured grids are generated about the blade and hub geometries
with su�cient resolution to capture viscous e�ects. The reference length scale for this problem is the tip chord
(Ctip) of the blades. O� body Cartesian grids are automatically generated by OVERFLOW. The \Baseline"
case as de�ned in Potsdam and Strawn uses a Level 1 grid (L1), which is uniform in all coordinate directions
with a grid spacing �L1 = 0:1Ctip. The near body grids are completely embedded within the L1 grid,
where the overset methodologies of hole cutting, blanking, and Chimera interpolation logic are employed
to interface the grid systems.3,5 Subsequent o� body Level 2 (L2) and higher Cartesian brick grids are
generated with spacing �Li = 2i�1�L1 to extend the grid to the outer boundary of the computational
domain, see Figure 6.

The Baseline grid of Potsdam and Strawn is a standard for comparison and will be used for the com-
parisons here. Table 1 lists the characteristics of the Baseline grid and a sequence of uniform o� body grid
re�nements. These grids are a sequence of halvings of the L1 spacing to improve the resolution of the wake
vortices being shed o� the blade tips. The \Huge" mesh for example represents three levels of re�nement of
the L1 spacing and produces a grid with over 3 billion points, possibly the largest aerodynamic RANS CFD
calculation to date.26

Shown in Fig. 7 is a comparison of the solution on the Baseline grid system (referred to as \Small" grid)
with the solution on the Medium grid system at the two accuracy choices, 3rd and 5th order. The results
of the Baseline case are exactly consistent with those reported by Potsdam and Strawn24 and Potsdam and
Pulliam.25 On the same grid, e.g. the small grid, the increased resolution and decreased error of the 5th order
scheme allows the tip vortices to persist longer. On the medium grid, the displacement of the vortex due
to increased dispersion error at the lower accuracy is evident. In Fig. 7, iso-surfaces of vorticity show that
the re�ned grid captures the wake vortex more accurately than the Baseline grid, producing signi�cantly
less decay of the vortex cores. Figure 8 shows vorticity contours at the y = 0 plane cut from the Baseline
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(Small), Medium grid, and Large grid for 3rd order accuracy, (FSO=3), and 5th order accuracy, (FSO=5).
Both grid re�nement and increased order of accuracy improve the tip vortex capturing and quality of the
vortex cores. Also note that increased resolution and accuracy improve the capturing of the blade trailing
edge wakes and their subsequent interaction with the tip vortices.

(a) Small grid, 3rd Order (b) Small grid, 5th Order

(c) Medium grid, 3rd Order (d) Medium grid, 5th Order

Figure 7. Iso-Surface Results for Small and Medium Grid, 3rd and 5th Order Accuracy

One measure of the e�ect of increased resolution and accuracy on the capturing of rotor wake vortices is
the growth rate of the vortex cores as a function of azimuthal angle measured from one of the blade tips. The
vortex core diameter as the distance between the minimum and maximum cross-
ow velocity components
(normalized by blade tip chord). Then the growth of the vortex core as a function of wake age (azimuthal
angle) can be constructed using the velocity pro�les and is displayed in Fig 9. Also shown is a composite
of experimental data, from Holst and Pulliam.27 The results of a grid re�nement sequence demonstrate
marked improvement of the rate of decay of the vortex core. This culminates in the Huge grid with 5th order
accuracy giving a rate comparable to the experimental data.

VIII. Summary

Higher order accurate central �nite di�erence options in OVERFLOW have been presented and demon-
strate the accuracy improvements for practical complex 
ows. The methods �t well in the overset structure
of OVERFLOW and do not hamper the parallel e�ciency of the code. The approach provides a simple
(both in implementation and concept) method for improving the solution accuracy.
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Figure 8. Vorticity Contours at y = 0 Cross-section Comparing 3rd and 5th Order Accuracy

Figure 9. Growth Rate of Vortex Core with Wake Age
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